
Math 461 F Spring 2011
Quadratic Field Extensions Drew Armstrong

Let F be a field and let c ∈ F be an element such that
√
c 6∈ F . (This

notation means that the equation x2 − c = 0 has no solution in F .) In this
case we can define a new, bigger number system

F [
√
c] := {a+ b

√
c : a, b ∈ F},

which we call “F adjoin
√
c ”. We have already seen an important example

of this. The complex numbers are just the same as R adjoin
√
−1:

C = R[
√
−1] =

{
a+ b

√
−1 : a, b ∈ R

}
.

You will agree by now that the complex numbers have remarkable and beau-
tiful properties. So perhaps the same is true of F [

√
c]? Yes.

First note that we can divide in F [
√
c]. Given a+ b

√
c ∈ F [

√
c] we have

1
a+ b

√
c

=
1

a+ b
√
c
· a− b

√
c

a− b
√
c

=
a− b

√
c

a2 − cb2

=
(

a

a2 − cb2

)
+

(
−b

a2 − cb2

)√
c,

which is again in F [
√
c]. We can multiply, add, and subtract elements of

F [
√
c] in the obvious way. Hence F [

√
c] is itself a field. We will call the pair

F ⊆ F [
√
c] a quadratic field extension.

In the above proof we used the high-school technique of “rationalizing the
denominator”. More formally, we define a conjugation map F [

√
c]→ F [

√
c]

by
a+ b

√
c := a− b

√
c.

Just like complex conjugation, the map v 7→ v̄ preserves addition and mul-
tiplication. Please check that for all u, v ∈ F [

√
c] we have

• u+ v = ū+ v̄, and
• uv = ūv̄.

(We say that v 7→ v̄ is an automorphism of the field F [
√
c].)

Finally, we note that F [
√
c] is (just like the complex numbers) really a

two-dimensional vector space. Suppose that a + b
√
c and a′ + b′√c are in

F [
√
c] with a+ b

√
c = a′ + b′√c. Then we have

a− a′ = (b′ − b)
√
c.

If b 6= b′ then we can divide both sides by b′ − b to get
√
c =

a− a′

b′ − b
∈ F,



which is a contradiction because we assumed that
√
c is not in F . Hence

b = b′ and consequently a = a′. That is, the element a + b
√
c acts very

much like a vector (a, b) with two coordinates. We could say that F [
√
c] is

isomorphic to the “F -plane” F 2.

Why did I bring this up now? Because quadratic extensions give us the
correct way to discuss constructibility.

Fact. The real number α is constructible with straightedge and compass if
and only if there exists a chain of quadratic extensions

Q = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fr ⊆ · · · ⊆ R
such that α ∈ Fr. Let’s say that Fk+1 = {a + b

√
ck : a, b ∈ Fk}, where

ck ∈ Fk is some element such that
√
ck 6∈ Fk. (We will assume that ck > 0

so that we always stay in R.) In general, the elements of Fk have more
“nested” square root brackets as k gets larger.

This interpretation immediately allows us to prove that 3
√

2 is not con-
structible with straightedge and compass. Hence the ancient problem of
“doubling the cube” is impossible. This result was (apparently) first proved
by Descartes.

Theorem. The real cube root of 2 is not constructible.

Proof. Suppose (for contradiction) that 3
√

2 is constructible. Then there
exists a chain of quadratic extensions

Q = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ R
such that 3

√
2 is in Fi for some i. Let Fk+1 be the minimum Fi which

contains 3
√

2. (You will show on the homework that k + 1 ≥ 1.) Thus 3
√

2
is in Fk+1 = Fk[

√
ck], but not in Fk, and we can write 3

√
2 = a + b

√
ck for

some a, b ∈ Fk with b 6= 0 (why?). Observe that

(a+ b
√
ck)3 − 2 = 0.

Now consider the conjugation map for the quadratic extension Fk ⊆ Fk+1

and apply this to both sides of the equation to get

(a+ b
√
ck)3 − 2 = 0(

a+ b
√
ck

)3
− 2 = 0

(a− b
√
ck)3 − 2 = 0.

In other words, a − b√ck is also a real cube root of 2. Since there is only
one real cube root of 2 (why?), we must have a + b

√
ck = a − b√ck, which

implies that b = −b, or b = 0. This is a contradiction. �


