HW 3 due March 4
(not posted yet)
Exam 2 March 25.

Today: Greek

The Pythagoreans (~500)
- "all is number"
- "number" = positive integers and their ratios

The Crisis: \(\sqrt{2}\) is not a "number".

Proof: Suppose \(\sqrt{2} = \frac{a}{b}\) for \(a, b \in \mathbb{Z}\).
Square to get \(2 = \frac{a^2}{b^2}\), or \(2b^2 = a^2\).
Since \(a^2\) is even, \(a\) is even, say \(a = 2a'\).
Then \(2b^2 = (2a')^2 = 4(a')^2\), or \(b^2 = 2(a')^2\).
Since \(b^2\) is even, \(b\) is even, say \(b = 2b'\).

We get \(\sqrt{2} = \frac{a}{b} = \frac{2a'}{2b'} = \frac{a'}{b'}\) with \(a' > a' > 1\)
\(b > b' > b' > b'' > \cdots > 1\).

Repeat to get \(\sqrt{2} = \frac{a}{b} = \frac{a'}{b'} = \frac{a''}{b''} = \cdots = e + c\).

But this is absurd.
(reductio ad absurdum) \(\square\)
So $\sqrt{2}$ is not a "number". But it's a perfectly good "length".

Greek is replaced:

"number" — "length of line segment".
This persisted until modern times.

Greek math based on... Ruler & Compass.
(i.e. lines and circles).

Start from

unit length: "1".

Which lengths can we construct?
(i.e. which "numbers" "exist"?)

1, 2, 3, 4, ... all positive \mathbb{Z}.
Given α, β we can add: form radius β
circle of A.

$\alpha + \beta$.

$O \rightarrow A \rightarrow B$.

$O \rightarrow B = \alpha + \beta$.

Given $\alpha - \beta$ we can subtract: same idea.

$\alpha - \beta$.

$O \rightarrow \text{radius } \beta$.

Given $\alpha \cdot \beta$ we can multiply:

1. form perpendicular axes.
② we can draw parallel to a given line

Proof (Euclid I.31).

Given

③ Given:

\[\alpha \beta \]

\[\frac{oD}{oB} = \frac{oE}{oC} \implies \frac{\alpha}{\beta} = \frac{OE}{oC} \implies OE = \alpha \beta. \]

Draw DE parallel to BC.

Given \(\alpha, \beta \) we can divide. Same idea.

Given:

Construct RC parallel to DE.

Then:

\[\frac{oD - oE}{oB} = \frac{oC}{oC} \]

\[\frac{\beta}{\beta} = \frac{\alpha}{\alpha} \]

Get \(oC = \frac{\alpha}{\beta} \).
Conclusion: all positive rationals \(\mathbb{Q}^+ \) are constructible.

Is that all? No!

Given \(\alpha, \beta \), we can form \(\sqrt{\alpha^2 + \beta^2} \):

\[
\sqrt{\alpha^2 + \beta^2}, \quad \text{by Pythagorean Theorem.}
\]

\(\alpha \)

\(\beta \)

\(\sqrt{\alpha^2 + \beta^2} \)

eg. \(\sqrt{2} = \sqrt{1^2 + 1^2} \) is constructible?

Is \(\sqrt{3} \) constructible?

\(3 \neq \alpha^2 + \beta^2 \), \(\rightarrow \) no help.

Theorem: If \(\alpha \) is constructible, then \(5 \) \(\sqrt{\alpha} \) is constructible.

Proof: \(\Box \) we can bisect a segment

(Ferulid, I.10)
Given

Draw $DC \perp AB$.

Exercise: Show $ACB = 90^\circ$.

Hence, $\triangle ABC$, $\triangle ADC$, $\triangle CDB$ are similar.

We get

$$\frac{AP}{CD} = \frac{x}{1} = \frac{CD}{BD}.$$
Consider vectors \(\vec{u} = (\cos \theta + 1, \sin \theta) \)
\(\vec{v} = (\cos \theta - 1, \sin \theta) \).

What is the angle between \(\vec{u} \), \(\vec{v} \)?

Recall:
\[\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \alpha. \]

\[\vec{u} \cdot \vec{v} = 0 \implies \vec{u} \perp \vec{v}. \]

\[\vec{u} \cdot \vec{v} = (\cos \theta - 1)(\cos \theta + 1) + \sin \theta \sin \theta. \]

\[= \cos^2 \theta - 1^2 + \sin^2 \theta \]
\[= \cos^2 \theta + \sin^2 \theta - 1 = 0. \]
HW 2 due next Fri Mar 4

Today: Constructibility

Using a straightedge & compass

which "lengths" = "numbers" are constructible?

Start with an arbitrary unit length "1"

Last time we proved:
If α, β are constructible, then so are

1. $\alpha + \beta$
2. $\alpha - \beta$ (when $\beta < \alpha$)
3. $\alpha \cdot \beta$
4. α / β

- All rational numbers are constructible.
5. $\sqrt{\alpha}$
So e.g.

\[
\sqrt{1 + \sqrt{3}} + \frac{101}{5 + \sqrt{2}} = \frac{77}{77}
\]

is constructible.

Q: Is every \(\alpha \in \mathbb{R}, \alpha > 0 \) constructible?

i.e. are "constructible lengths" = "all possible lengths"?

The Greeks didn't know, but they got stuck on 3 problems, ...

1) Squaring the circle.

Given a circle, construct a square with the same area.

Unit circle has area \(\pi \).

Is \(\sqrt{\pi} \) (or \(\pi \)) constructible?

Theorem (Lindemann, 1882): NO.
2) Doubling the Cube.

Give (the edge of) a cube, construct (the edge of) a cube with double the volume.

Volume 1

\[\sqrt[3]{2} \]

Volume 2

Is \(\sqrt[3]{2} \) constructible?

Theorem (Descartes, 1637): \(\text{N O} \).

3) Trisecting an Angle

Given the angle \(\theta \), construct the angle \(\frac{\theta}{3} \),

given lines construct lines

\[\frac{\theta}{3} \]

\[\frac{\theta}{3} \]

Given \(\cos \theta \), is \(\cos \left(\frac{\theta}{3} \right) \) always constructible?

Theorem (Gauss, 1796 \& Wantzel, 1837): \(\text{N O} \).

Q: How'd they do dat?
A: Algebra

Let \(C = \text{constructible numbers} \)
\(D = \text{numbers formed from} \)
\[1, 1, -1, x, \frac{c}{c}, \sqrt{-} \]

Theorem: \(C = D \)

Proof: We already saw \(D \subseteq C \).
Need \(C \subseteq D \).

Think in coordinates (Descartes). Note:
point \((x, y)\) constructible \(\Rightarrow x, y\) are able.

So sp. \((x, y)\) has been constructed.

Where did \((x, y)\) come from? It was an intersection point for some
line & line
line & circle
circle & circle

with able coefficients. Claim: Then
\[x = \frac{a + \sqrt{b}}{c} \quad \text{and} \quad y = \frac{c + \sqrt{d}}{e} \]
for some constructible a, b, c, d, e, f.
 Assume for induction that $a, b, c, d, e, f \in D$.
 Then $x, y \in D$.

Intersect
- line & line \rightarrow linear equation
- line & circle \rightarrow quadratic
- circle & circle \rightarrow ?

You will do this on HW 3
Recall: If $x \in \mathbb{R}$ is constructible (with straight edge and compass) then x is formed recursively by intersecting lines and circles with only coefficients. In each case the solution can be done using $+, -, \times, \div, \sqrt{}$

1. line \ line \rightarrow linear equation
2. line \ circle \rightarrow quadratic equation
3. circle \ circle \rightarrow ? Exercise.

Hence x has an expression in $1, +, -, \times, \div, \sqrt{}$

"a degree 2 algebraic expression"

Conversely, we have seen that $x + p, xp, \frac{x}{p}, \sqrt{x}$ can be constructed, so any $x \in \mathbb{R}$ with a degree 2 alg. expression is constructible.
Summary: Let \(C = \) constructible \#'s
\[D = \text{\#'s formed recursively from } 1, +, -, \times, \div, \sqrt{\cdot} \]

Then \(C = D \) (geometry) (Algebra!)

(A means to show that some \(x \in \mathbb{R} \) is NOT c'de.

Describe \(D \) more precisely?

Let \(F = \) a field "number system with +, -, \times, \div"

(eg. \(\mathbb{R}, \mathbb{Q}, \mathbb{C} \)).

and suppose \(c \in F \) with \(\sqrt{c} \in F \).

We form a new number system

\[F[\sqrt{c}] = \left\{ a + b\sqrt{c} : a, b \in F \right\} \]
\[
\mathbb{Q}[\sqrt{2}] = \{ a + b\sqrt{2} : a, b \in \mathbb{Q} \}
\]

"rational numbers adjoin \(\sqrt{2} \)"

eg. \(\mathbb{R}[\sqrt{-1}] = \{ a + b\sqrt{-1} : a, b \in \mathbb{R} \} \)

In general, \(\mathbb{F}[\sqrt{c}] \) is similar to \(\mathbb{R}[\sqrt{-1}] \).

We can divide:

eg. Given \(a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}] \)

\[
\frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{(a + b\sqrt{2})(a - b\sqrt{2})} = \frac{a - b\sqrt{2}}{a^2 - 2b^2}.
\]

\[
= \left(\frac{a}{a^2 - 2b^2} \right) + \left(\frac{-b}{a^2 - 2b^2} \right) \sqrt{2} \in \mathbb{Q}[\sqrt{2}].
\]

\(\Rightarrow \mathbb{Q}[\sqrt{2}] \) is a field.

\[\mathbb{Q}[\sqrt{2}] \rightarrow \mathbb{Q}[\sqrt{2}]\]

The map \(a + b\sqrt{2} \mapsto a - b\sqrt{2} \)

is called \(\text{CONJUGATION} \).

\(\sqrt{2} \mapsto \sqrt{2} \)
$\mathbb{Q}[\sqrt{2}]$ is also a vector space.

Suppose $a + b\sqrt{2} = c + d\sqrt{2}$

Then $(a - c) = (d - b)\sqrt{2}$.

If $b \neq d$, then $\sqrt{2} = \frac{a - c}{d - b}$ a contradiction!

Hence $b = d$ & $a = c$

Summary:

$a + b\sqrt{2} = c + d\sqrt{2} \iff a = c & b = d$.

So $a + b\sqrt{2}$ acts like a vector (a, b)

(geometry)

$\mathbb{Q}[\sqrt{2}] \cong \mathbb{Q}^2$

the rational plane

Summary: Given field F and $c \in F$ with $\sqrt{c} \in F$, then $F[\sqrt{c}]$ is a field, with

$a + b\sqrt{c} = a' + b'\sqrt{c} \iff a = a' \text{ AND } b = b'$
\[F \subseteq F[52] \]
is a "quadratic field extension."

So WHAT?

Rephrase constructibility:

\(\alpha \in \mathbb{Q} \) is constructible

\[\Rightarrow \]

\(\exists \) chain of quadratic extensions

\(\mathbb{Q} = F_0 \subseteq F_1 \subseteq F_2 \subseteq \ldots \subseteq F_r \subseteq \ldots \subseteq \mathbb{R} \)

with \(\alpha \in F_r \).

This is USEFUL

Theorem: \(3\sqrt{2} \) is not constructible.

(Landau, when he was a student).

Proof: Suppose (for contradiction) that \(3\sqrt{2} \) is constructible. Then \(\exists \)

\[\mathbb{Q} = F_0 \subseteq F_1 \subseteq F_2 \subseteq \ldots \subseteq F_r \subseteq F_{r+1} \subseteq \ldots \subseteq \mathbb{R} \]

where \(3\sqrt{2} \in F_{r+1} \) but not in \(F_r \).
Hence \(\sqrt[3]{2} = a + b\sqrt{c} \) with \(a, b, c \in \mathbb{F}_{k+1} \) and \(c \neq 0 \).

CUBE to get

\[
2 + 3\sqrt{c} = (a + b\sqrt{c})^3 \]

\[
= (a^3 + 3a^2b\sqrt{c}) + (3ab^2c + b^3c)\sqrt{c}.
\]

Compare coefficients:

\[
2 = a^3 + 3ab^2c \quad \text{and} \quad 0 = 3a^2b + b^3c
\]

Now (for fun) expand

\[
(a - b\sqrt{c})^3 - 2
\]

\[
= (a^3 + 3ab^2c - 2) - (3a^2b + b^3c)\sqrt{c},
\]

from (*)

\[
= 0 - 0\sqrt{c} = 0.
\]

Hence, \(a - b\sqrt{c} \) is a Real cube root of 2.

Conclude \(\sqrt[3]{2} = a + b\sqrt{c} = a - b\sqrt{c} \).

\[a = a \quad \text{and} \quad b = -b \Rightarrow b = 0
\]

\[\Rightarrow \sqrt[3]{2} = a \in \mathbb{F}_{k+1} \text{ contradiction} \]
Suppose $3\sqrt{2}$ is constructible. Then \exists

$$Q = F_0 \subset F_1 \subset \cdots \subset F_k \subset F_{k+1} \subset \cdots \subset \mathbb{R}$$

where $3\sqrt{2} \in F_{k+1}$ but NOT F_k.

Then we can write $3\sqrt{2} = a + b\sqrt{c}$, $a, b \in F_k$.

So $$(a + b\sqrt{c})^3 - 2 = 0.$$

Apply conjugation $F_{k+1} \rightarrow F_k$

$$\alpha + \beta\sqrt{c} \mapsto \alpha - \beta\sqrt{c}$$

$$(a + b\sqrt{c})^3 - 2 = 0$$

$$(a - b\sqrt{c})^3 - 2 = 0$$

\implies a - b\sqrt{c} \in \mathbb{R} \text{ is a cube root of } 2.$$

\[\checkmark\]
Today : A "high-school" problem

Compute intersection of circles. (Easy?)

\[\sum (x-a)^2 + (y-b)^2 = R^2 \]
\[\sum (x-c)^2 + (y-d)^2 = r^2 . \]

Try to simplify by changing coordinates.

Idea: move centers \((a,b)\) and \((c,d)\)

to \((0,0)\) and \((0,0)\).

First let \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) be translation by \((-a)\)

\[T(x,y) = (x-a, y-b) \]
\[T(b) = (b) \text{ and } T(c) = (c - a) \]

Let \(\Delta = \sqrt{(c-a)^2 + (d-b)^2} = \text{dist}\left(\left(\begin{array}{c} a \\ b \end{array}\right), \left(\begin{array}{c} d \\ b \end{array}\right)\right) \)

Next, rotate by \(-\theta \)

\[R_{-\theta} : \mathbb{R}^2 \to \mathbb{R}^2. \]

\[R_{-\theta} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \]

\[= \frac{1}{\Delta} \begin{pmatrix} c-a & d-b \\ -(d-b) & c-a \end{pmatrix} \]

Does this work?

\[R_{-\theta}(b) = (b) \text{ and } \]

\[R_{-\theta}(c-a) = \frac{1}{\Delta} \begin{pmatrix} c-a & d-b \\ -(d-b) & c-a \end{pmatrix} \begin{pmatrix} c-a \\ d-b \end{pmatrix} \]
\[= \frac{1}{\Delta} \begin{pmatrix} \Delta^2 \\ 0 \end{pmatrix} = \begin{pmatrix} \Delta \\ 0 \end{pmatrix} \]

The transformation is

\[\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow R(T(\begin{pmatrix} x \\ y \end{pmatrix})) \]

\[= R \begin{pmatrix} x-a \\ y-b \end{pmatrix} \]

\[= \frac{1}{\Delta} \begin{pmatrix} (c-a) & d-b \\ -(d-b) & c-a \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix} \]

\[= \frac{1}{\Delta} \begin{pmatrix} (x-a)(c-a) + (y-b)(d-b) \\ -(x-a)(d-b) + (y-b)(c-a) \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} \]

New coordinates.

\[\begin{pmatrix} x' \\ y' \end{pmatrix} = RT'(\begin{pmatrix} x \\ y \end{pmatrix})\]

How to invert? \(\square\)
The inverse of \(RT \) is \(T^{-1} R^{-1} \)

where \(T^{-1} \) = translate by \((+a, +b)\)
\(R^{-1} \) = rotate by \(+\theta\).

Formula on hadout.

Note: If \((x, y)\) is on circles

\((a, b)\) radius \(R \)
\((c, d)\) radius \(r \)

Then \((x', y') = RT(y)\) is on circles

\((0, 0)\) radius \(R \)
\((0, 0)\) radius \(r \)

Hence

\[x'^2 + y'^2 = R^2 \]
\[(x' - \Delta)^2 + y'^2 = r^2 \]

Much easier to solve \(\rightarrow \) A.6.
Recall:

Given field F with $\alpha \in F$, $\sqrt{\alpha} \in F$, define quadratic field extension

$$F = F[\sqrt{\alpha}] = \{ a + b\sqrt{\alpha} : a, b \in F \}.$$

(similar to complex numbers.

$F = F[\sqrt{i}]$)

We say $\alpha \in F$ has a "degree 2 alg. expression" if α can be written from $1, i, -1, x, \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{11}, \sqrt{13}$.

e.g. $\alpha = \sqrt{1 + \sqrt{3}}$

Equivalently, \exists chain of \mathbb{Q}, F, E.

$$\mathbb{Q} = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_i \subseteq F_{i+1} \subseteq \cdots \subseteq F$$

such that $\alpha \in F_i$ for some i.

e.g. chain

$$\mathbb{Q} \subseteq \mathbb{Q}[\sqrt{3}] \subseteq \mathbb{Q}[\sqrt{5}] \subseteq \mathbb{Q}[\sqrt{1 + \sqrt{3}}] \subseteq \mathbb{Q}[\sqrt{1 + \sqrt{5}}] \subseteq \mathbb{Q}$$

more "nesting".
Theorem: $3\sqrt{2}$ is not constructible.

Proof: suppose (for contradiction) that it is.

Then $\exists \quad \Omega = F_0 \subseteq F_1 \subseteq \cdots \subseteq \mathbb{R}$,

where $3\sqrt{2} \in F_{r+1}$ for some r.

$3\sqrt{2} \in F_r$.

(Note: $3\sqrt{2} \in F_0 = \Omega$).

Say, $F_{r+1} = F_r [\sqrt[n]{c}] = \langle a + b \sqrt[n]{c}, a, b \rangle$.

Hence $3\sqrt{2} = a + b \sqrt[n]{c}$ for some $a, b \in F_r$.

(Note: $b \neq 0$ because $3\sqrt{2} \in F_r$).

Then $(a + b \sqrt[n]{c})^3 = 2$.

Conjugate both sides:

\[(a + b \sqrt[n]{c})^3 = 2 + 0 \sqrt[n]{c}. \]

\[\left(\frac{a + b \sqrt[n]{c}}{2} \right)^3 = 2 - 0 \sqrt[n]{c}. \]

\[(a - b \sqrt[n]{c})^3 = 2 \]

Hence $a - b \sqrt[n]{c} \in \mathbb{R}$ is a cube root of 2.

Hence $a - b \sqrt[n]{c} = a + b \sqrt[n]{c} \Rightarrow b = -b \Rightarrow b = 0$.
HW 3 due now.
HW 4 due next Friday, March 11.
Spring Break
Exam 2, Fri. Mar. 25

Today: $\cos \theta \rightarrow \cos \frac{\theta}{3}$?

We have seen

$$\cos \left(\frac{\theta}{2} \right) = \pm \sqrt{\frac{1 + \cos \theta}{2}}.$$

Hence if $\cos \theta$ is c'ble then $\cos \theta$ is c'ble.

"Any c'ble angle can be bisected."

Some angles can be trisected.

e.g. a right angle.

![Diagram](image-url)

These points are c'ble.
Proof: Let \(\omega = \cos \left(\frac{2\pi}{3} \right) + i \sin \left(\frac{2\pi}{3} \right) \)

Picture:

\[-1 = \omega^2 \]

\[\omega^3 = -\omega \]

Cube roots of \(-1\).

\[\omega + \omega^2 + \omega^3 = 0 \]
\[\omega - 1 + \frac{1}{\omega} = 0 \]
\[\omega + \frac{1}{\omega} = 1 \]
\[2 \cos \left(\frac{\pi}{3} \right) = 1 \]
\[\cos \left(\frac{\pi}{3} \right) = \frac{1}{2} \Rightarrow \sin \left(\frac{\pi}{3} \right) = \sqrt{1 - \frac{1}{2}} = \frac{\sqrt{3}}{2} \]

Both c'ble!

However, Claim: \(\frac{\pi}{3} \) cannot be trisected.

i.e. \(\cos \left(\frac{\pi}{9} \right) \) is not c'ble.

Let's prove it!
Recall: \[\cos(3\theta) = 4\cos^3\theta - 3\cos\theta. \]

Put \(\theta = \frac{\pi}{9} \) to get:

\[\frac{1}{2} = \cos\left(\frac{\pi}{3}\right) = 4\cos^3\left(\frac{\pi}{9}\right) - 3\cos\left(\frac{\pi}{9}\right). \]

\[4x^3 - 3x - \frac{1}{2} = 0, \text{ where } x = \cos\left(\frac{\pi}{9}\right). \]

Let \(y = x/2 \) to get:

\[\frac{4y^3 - 3y - \frac{1}{2}}{8} = 0 \]

\[y^3 - 3y - 1 = 0 \text{ where } y = \frac{\cos\left(\frac{\pi}{9}\right)}{2}. \]

Claim: \(y^3 - 3y - 1 = 0 \) has no solution in \(\mathbb{Q} \).

Proof: Suppose \(y = \frac{a}{b} \) is a solution with \(a, b \in \mathbb{Z} \), \(a, b \) coprime (no common factor).

Then \[\frac{a^3}{b^3} - \frac{3a}{b} - 1 = 0 \]

\[\frac{a^3 - 3ab^2 - b^3}{b^3} = 0. \]

\[a(a^2 - 3b^2) = b^3. \]

\[\Rightarrow a \mid b^3. \text{ But } a, b \text{ coprime.} \]

Hence \(a = \pm 1 \).
Similarly \(a^3 = b(3a + b^2) \)

\[\Rightarrow b \mid a^3 \Rightarrow b = \pm 1.\]

So the only possible \(\mathbb{R} \) roots are \(\pm \frac{1}{\pm 1} \).

But

\[
\begin{align*}
(+1)^3 - 3(+1) - 1 & \neq 0 \\
(-1)^3 - 3(-1) - 1 & \neq 0
\end{align*}
\]

Corollary: \(\cos \left(\frac{\pi}{3} \right) \notin \mathbb{Q} \)

General method.

Rational Root Test:

Given \(f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0 \in \mathbb{Z}[x] \),

If \(f\left(\frac{a}{b} \right) < 0 \) for \(\frac{a}{b} \in \mathbb{Q} \), then

\[a \mid c_0 \text{ AND } b \mid c_n. \]

\(\Rightarrow \) Finitely many possibilities that can be checked.

eg. \(3x^3 - 5x^2 + 5x - 2 = 0 \).

Q - roots restricted to \(\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3} \)

\(\pm 1, \pm \frac{2}{3} \) plug them in.
Lemma: Consider \(\alpha, F, E \), \(F \subseteq F[\sqrt{E}] \) with conjugation at \(c : \delta \rightarrow a - b \sqrt{c} \).

If cubic \(f(x) \in F[x] \) has a root in \(F[\sqrt{c}] \), then it also has a root in \(F \).

Proof: Suppose \(\alpha \in F[\sqrt{c}] \) with \(f(\alpha) = 0 \).

If \(\alpha \in F \) done, otherwise note that

\[
f(\alpha) = 0
\]

\[
f(\overline{\alpha}) = 0
\]

So \(\overline{\alpha} \) is another root \((\alpha \neq \overline{\alpha} \text{ since } \alpha \notin F) \).

Factor to get

\[
f(x) = (x - \alpha)(x - \overline{\alpha})(x - \beta)
\]

for some \(\beta \).

\[
= (x^2 - (\alpha + \overline{\alpha})x + \alpha \overline{\alpha})(x - \beta).
\]

But note \(\alpha + \overline{\alpha} \in F \)

\(\alpha \overline{\alpha} \in F \).

Hence \(\beta = \frac{f(\alpha)}{x^2 - (\alpha + \overline{\alpha})x + \alpha \overline{\alpha}} \in F \), all in \(F[x] \).
Theorem: \(\cos \left(\frac{\pi}{9} \right) \) is NOT constructible.

Proof: Suppose (for contradiction) that it is constructible.

Then \(\mathbb{Q} \) chain of \(\mathbb{Q}(\sqrt{3}) \):

\[\mathbb{Q} = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_k \subseteq \cdots \subseteq \mathbb{R} \]

such that \(\cos \left(\frac{\pi}{9} \right) \in F_k \).

But then \(x^3 - 3x - 1 \) has a root in \(F_k \).

Hence it has a root in \(F_{k-1} \) (by lemma)...

\[\cdots \subseteq \cdots \subseteq \in F_{k-2} \]

Hence it has a root in \(F_0 = \mathbb{Q} \).

But \(x^3 - 3x - 1 \) has no \(\mathbb{Q} \)-root.

\[\square \]

Trisecting an Angle is Impossible! (in general).