
Math 461 F Spring 2011
Homework 6 Solutions Drew Armstrong

Book Problems.

Problem 6.4.8. Let r, s, t be the zeros of the real polynomial x3 + 23x + 1. Find the real
cubic (monic) polynomial whose zeros are r2, s2, t2.

By assumption we have

x3 + 23x+ 1 = (x− r)(x− s)(x− t)
= x3 − (r + s+ t)x2 + (rs+ rt+ st)x− rst.

Then equating coefficients on the left and right gives

−0 = e1 = r + s+ t,

23 = e2 = rs+ rt+ st,

−1 = e3 = rst.

Now we are looking for the coefficients of the polynomial

f(x) = (x− r2)(x− s2)(x− t2)

= x3 − (r2 + s2 + t2)x2 + (r2s2 + r2t2 + s2t2)x− r2s2t2.

First note that r2s2t2 = e23 = (−1)2 = 1.
Next (Problem 6.4.1) we wish to express r2 + s2 + t2 in terms of e1, e2, e3. Using Gauss’

algorithm, or just trial and error, we have

(r2 + s2 + t2) = (r + s+ t)2 − 2(r + s+ t) = e21 − 2e2 = (−0)2 − 2 · 23 = −46.

Next (Problem 6.4.4) we wish to express X = r2s2 + r2t2 + s2t2 in terms of e1, e2, e3. We
will use Gauss’ algorithm explicitly this time. First note that the leading term is r2s2. To
eliminate this we will subtract e22 which has the same leading term. This gives

X − e22 = −2r2st− 2rs2t− 2rst2 = −2(r + s+ t)(rst) = −2e1e3.

Hence X = e22 − 2e1e3 = 232 − 2(−0)(−1) = 529.
Finally, we conclude that the real cubic (monic) polynomial with roots r2, s2, t2 is

f(x) = x3 + 46x2 + 529x− 1.

Additional Problems.

A.1. Euler showed that every real polynomial of the form x4 +αx2 + βx+ γ factors into two
real quadratics. Use his result to prove that every real polynomial of the form ax4 + bx3 +
cx2 + dx + e factors into two real quadratics. (Hint: Use a change of variables to turn your
polynomial into Euler’s polynomial.)

Let f(x) = ax4 +bx3 +cx2 +dx = e, where a, b, c, d, e ∈ R with a 6= 0. We wish to show that
f(x) factors as the product of two real quadratics. First note that f(x−b/4a) is a real quartic
polynomial with no x3 term and leading coefficient a. We can make the leading coefficient 1
by dividing the whole thing by a. That is, we have
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for some α, β, γ ∈ R. Now Euler showed that this polynomial can be factored into two real
quadratics, say g(x) and h(x) ∈ R[x]:
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Finally, we undo the change of variables to obtain an explicit factorization of f(x) into two
real quadratics:
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A.2. Suppose that a given real quartic equation has roots a, b, c, d in some field E ⊇ R. (Today
we know that these roots must be complex, but in times past their nature was mysterious.)
Now let f(a, b, c, d) be some function of a, b, c, d that is invariant under any permutation of
the roots. Explain why f(a, b, c, d) is a real number. (Hint: The Fundamental Theorem of
Symmetric Functions.)

Suppose f(a, b, c, d) is a symmetric function in a, b, c, d. Specifically, f(a, b, c, d) is a poly-
nomial in a, b, c, d with real (probably rational) coefficients which is invariant under any per-
mutation of the inputs. By the Fundamental Theorem of Symmetric Functions, we can write

f = g(e1, e2, e3, e4),

for some unique polynomial g. By Gauss’ algorithm, we know that the coefficients of g come
from the coefficients of f , so they will also be real. Finally, we know that −e1, e2,−e3, e4 are
the coefficients of the polynomial with roots a, b, c, d, and these coefficients are assumed to be
be real. Thus f = g(e1, e2, e3, e4) is real.

A.3. Let a, b, c, d be the roots of some real quartic equation with no x3 term (i.e. we have
a+ b+ c+ d = 0.) Let p = a+ b, q = a+ c, and r = a+ d, so that −p = c+ d, −q = b+ d, and
−r = b+ c. Prove that pqr is a real number, and hence −p2q2r2 is a negative real number.
(Hint: Show that pqr is invariant under permuting a ↔ b, or a ↔ c, or a ↔ d. Hence it’s
invariant under any permutation of a, b, c, d.)

By Problem A.2., it is enough to show that pqr is invariant under any permutation of
the inputs a, b, c, d. First, let’s examine what happens if we switch the inputs a ↔ b. In
this case p → p, q → −r and r → −q. Hence pqr turns into p(−r)(−q) = pqr. It doesn’t
change. Next, if we switch a ↔ c we get p → −r, q → q and r → −p, so pqr turns into
(−r)q(−p) = pqr. It doesn’t change. Finally, what happens when we switch a ↔ d? We
have p→ −q, q → −p and r → r, hence pqr turns into (−q)(−p)r = pqr. It doesn’t change.
You could try a fex more permutations (for example, try a → b → c → d → a) and you will
observe that pqr always remains the same. There are 24 permutations of a, b, c, d and you can
check that they all leave pqr invariant, but in fact the three switches a↔ b, a↔ c and a↔ d
are enough because they generate all the others (you can take my word for it.) So we’re done.

Since pqr is a symmetric function of a, b, c, d, and since a, b, c, d are the roots of a real
polynomial, we conclude by A.2. that pqr is real. Hence −p2q2t2 is a negative real number.
(It could possibly be zero, but I don’t want to worry about that. Lagrange took care of that
case with a change of variables.)

Note: Problems A.1, A.2 and A.3 fill in some of the details in Euler’s proof of the FTA. There
are still a couple more details to fill, but they’re not too hard. Lagrange and Kronecker took care
of it for us.


