
Math 310 Spring 2024
Homework 6 Drew Armstrong

1. Various Kinds of First and Second Derivatives in R3. For any scalar field f(x, y, z)
we define a vector field Grad(f) and a scalar field Laplacian(f) by

Grad(f) = “∇f” = 〈fx, fy, fz〉,
Laplacian(f) = “∇2f” = fxx + fyy + fzz.

and for any vector field F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉 we define a vector field
Curl(F) and a scalar field Div(F) by

Curl(F) = “∇× F” = 〈Ry −Qz, Pz −Rx, Qx − Py〉,
Div(F) = “∇ • F” = Px +Qy +Rz.

(a) For any scalar field f : R3 → R check that Curl(Grad(f)) = 〈0, 0, 0〉.
(b) For any vector field F : R3 → R3 check that Div(Curl(F)) = 0.
(c) For any scalar field f : R3 → R check that Div(Grad(f)) = Laplacian(f).

(a): Let Grad(f) = 〈P,Q,R〉 = 〈fx, fy, fz〉. Then

Curl(Grad(f)) = Curl(〈P,Q,R〉)
= 〈Ry −Qz, Pz −Rx, Qx − Py〉
= 〈(fz)y − (fy)z, (fx)z − (fz)x, (fy)x − (fx)y〉
= 〈fzy − fyz, fxz − fzx, fyx − fxy〉
= 〈0, 0, 0〉,

because the mixed partial derivatives of f commute.

(b): Let F = 〈P,Q,R〉 and let Curl(F) = 〈U, V,W 〉, so that

〈U, V,W 〉 = 〈Ry −Qz, Pz −Rx, Qx − Py〉.
Then we have

Div(Curl(F)) = Div(〈U, V,W 〉)
= Ux + Vy +Wz

= (Ry −Qz)x + (Pz −Rx)y + (Qx − Py)z
= Ryx −Qzx + Pzy −Rxy +Qxz − Pyz
= Pzy − Pyz +Qxz −Qzx +Ryx −Rxy
= 0 + 0 + 0

= 0,

because the mixed partial derivatives of P,Q,R commute.

Remark: Thus two of the most natural concepts of “second derivative” in three dimensions are
always zero. There are only two more that we could consider: The divergence of the gradient,
and the gradient of the divergence. The divergence of the gradient is called the “Laplacian”
and it is the most useful version of “the second derivative” in higher dimensions.

(c): For any scalar function f(x, y, z) we have

Div(Grad(f)) = Div(〈fx, fy, fz〉)



= (fx)x + (fy)y + (fz)z

= fxx + fyy + fzz.

Remark: It is common to think of ∇ as a vector of differential operators

∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
= 〈∂x, ∂y, ∂z〉.

This is a somewhat fictional concept but the notation is useful.1 Then we can think of ∇f ,
∇×F and ∇•F as scalar multiplication, cross product and dot product. Using this notation,
parts (a) and (b) become “obvious” because

Curl(Grad(f)) = ∇× (∇f) = (∇×∇)f = 〈0, 0, 0〉f = 〈0, 0, 0〉
and2

Div(Curl(F)) = ∇ • (∇× F) = F • (∇×∇) = F • 〈0, 0, 0〉 = 0.

But are these proofs correct?

In operator notation the Laplacian becomes

Div(Grad(f)) = ∇ • (∇f) = (∇ •∇)f = “∇2f”,

where
∇2 = ∇ •∇ = (∂x)2 + (∂y)

2 + (∂z)
2

is the “Laplacian differential operator”. This operator appears in the fundamental equations
of physics. If f(x, y, z, t) is the temperature at the point (x, y, z) at time t then the heat
diffusion is governed by the “heat equation”:

ft = −∇2f.

If f(x, y, z, t) is the pressure at the point (x, y, z) at time t then the propagation of pressure
waves (such as sound) is governed by the “wave equation”:

ftt = ∇2f.

2. Conservative Vector Fields. Consider the vector field

F(x, y, z) = 〈2x+ y, x+ z, y〉.
(a) Check that the curl is zero: ∇× F(x, y, z) = 〈0, 0, 0〉.
(b) It follows from (a) that there exists a scalar field f(x, y, z) satisfying ∇f(x, y, z) =

F(x, y, z). Find one example of such a field. [Hint: Integrate F along an arbitrary path
starting at some arbitrary point and ending at the point (x, y, z). For the purpose of
this calculation let x, y, z be constant.]

(a): Let F(x, y, z) = 〈2x+ y, x+ z, y〉 = 〈P,Q,R〉. Then

Curl(F) = 〈Ry −Qz, Pz −Rx, Qx − Py〉
= 〈(y)y − (x+ z)z, (2x+ y)z − (y)x, (x+ z)x − (2x+ y)y〉
= 〈1− 1, 0− 0, 1, 1〉
= 〈0, 0, 0〉.

This guarantees that there exists a scalar field f(x, y, z) satisfying F = ∇f .

1This “operator calculus” was introduced by Maxwell and other British mathematicians in the late 1800s.
It was regarded with suspicion by some mathematicians well into the twentieth century.

2It is true for any vectors u,v,w ∈ R3 that u • (v ×w) = w • (u× v).



(b): To find such a field we should integrate F along a path r(t) ending at the point (x, y, z).
(For the purpose of this calculation we let x, y, z be constant.) The simplest such path I can
think of is r(t) = (tx, ty, tz) with 0 ≤ t ≤ 1. Thus we get

f(x, y, z) =

∫ 1

0
F(r(t)) • r′(t) dt

=

∫ 1

0
F(tx, ty, tz) • 〈x, y, z〉 dt

=

∫ 1

0
〈2tx+ ty, tx+ tz, ty〉 • 〈x, y, z〉 dt

=

∫ 1

0
[(2tx+ ty)x+ (tx+ tz)y + (ty)z] dt

=

∫ 2

0
[2x2 + yx+ xy + zy + yz]t dt

= (2x2 + 2xy + 2yz)

∫ 1

0
t dt

= (2x2 + 2xy + 2yz)
1

2
t2
∣∣∣∣1
0

= x2 + xy + yz.

It is easy to check that this answer is correct:

∇(x2 + xy + yz) = 〈2x+ y, x+ z, y〉 = F.

Remark: If F were not conservative, i.e., if Curl(F) 6= 〈0, 0, 0〉, we could still try to compute
f(x, y, z) using the above method, but the final answer would not satisfy ∇f = F because a
non-conservative field can not be expressed in the form ∇f .

3. Green’s Theorem on a Rectangle. Consider the vector field F(x, y) = 〈y2, x2〉.
(a) Compute the scalar curl of F.
(b) Integrate the scalar curl of F over the rectangle with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1.
(c) Let C1, C2, C3, C4 be the four sides of the rectangle, oriented counterclockwise. Inte-

grate F along each of these curves and add the results. Check that your answers to
(a) and (b) are the same. [Hint: You can parametrize the four sides by

r1(t) = (0, 0) + t(2, 0),

r2(t) = (2, 0) + t(0, 1),

r3(t) = (2, 1) + t(−2, 0),

r4(t) = (0, 1) + t(0,−1),

each with 0 ≤ t ≤ 1.]

(a): Let F(x, y) = 〈y2, x2〉 = 〈P,Q〉, so that

Curl(F) = Qx − Py = 2x− 2y.

Note that Curl(F) 6= 0 so this field is not conservative.



(b): We integrate Curl(F) = 2x− 2y over the rectangle D with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1:∫∫
D

Curl(F) dA =

∫∫
D

(2x− 2y)dxdy

=

∫ 1

0

(∫ 2

0
(2x− 2y) dx

)
dy

=

∫ 1

0

[
x2 − 2yx

]2
0
dy

=

∫ 1

0

[
x2 − 2yx

]2
0
dy

=

∫ 1

0
(4− 4y) dy

=
[
4y − 2y2

]1
0

= 2.

(c): The boundary of the rectangle is ∂D = C1 + C2 + C3 + C4, so that∫
∂D

F •T dx =

∫
C1

F •T ds+

∫
C2

F •T ds+

∫
C3

F •T ds+

∫
C4

F •T ds.

Thus we need to compute the four integrals and them add them up. According to Green’s
Theorem we must get the same answer as in part (a), i.e., 2. For r1(t) = (2t, 0) we have∫

C1

F •T ds =

∫ 1

0
F(r1(t)) • r′1(t) dt

=

∫ 1

0
F(2t, 0) • 〈2, 0〉 dt

=

∫ 1

0
〈0, 4t2〉 • 〈2, 0〉 dt

=

∫ 1

0
0 dt

= 0.

Then for r2(t) = (2, t) we have∫
C2

F •T ds =

∫ 1

0
F(r2(t)) • r′2(t) dt

=

∫ 1

0
F(2, t) • 〈0, 1〉 dt

=

∫ 1

0
〈t2, 4〉 • 〈0, 1〉 dt

=

∫ 1

0
4 dt

= 4.

For r3(t) = (2− 2t, 1) we have∫
C3

F •T ds =

∫ 1

0
F(r3(t)) • r′3(t) dt



=

∫ 1

0
F(2− 2t, 1) • 〈−2t, 0〉 dt

=

∫ 1

0
〈1, (2− 2t)2〉 • 〈−2, 0〉 dt

=

∫ 1

0
−2 dt

= −2.

And for r4(t) = (0, 1− t) we have∫
C4

F •T ds =

∫ 1

0
F(r4(t)) • r′4(t) dt

=

∫ 1

0
F(0, 1− t) • 〈0,−1〉 dt

=

∫ 1

0
〈(1− t)2, 0〉 • 〈0,−1〉 dt

=

∫ 1

0
0 dt

= 0.

Note that the four integrals add up to 2 as required by Green’s Theorem:∫
∂D

F =

∫
C1

F +

∫
C2

F +

∫
C3

F +

∫
C4

F = 0 + 4− 2 + 0 = 2 =

∫∫
D

Curl(F).

4. Stokes’ Theorem on a Pringle. Consider the constant vector field F(x, y, z) = 〈−y, x, 1〉
and the pringle-shaped surface D defined by

r(u, v) = 〈u cos v, u sin v, u2 cos v sin v〉,

with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π.

(a) Compute the curl ∇× F(x, y, z).
(b) Compute the flux of the curl ∇× F across the pringle:∫∫

D
(∇× F) •N dA =

∫∫
(∇× F)(r(u, v)) • ru × rv

‖ru × rv‖
‖ru × rv‖ dudv

=

∫∫
(∇× F)(r(u, v)) • (ru × rv) dudv.

[Hint: From the previous homework we have ru × rv = 〈−u2 sin v,−u2 cos v, u〉.]
(c) Let C = ∂D be the boundary curve of the pringle. Compute the circulation of F

around C. Check that your answers to (b) and (c) are the same. [Hint: If r(t) is a
parametrization of C then the circulation is defined by∫

C
F •T ds =

∫
F(r(t)) • r′(t)

‖r′(t)‖
‖r′(t)‖ dt

=

∫
F(r(t)) • r′(t) dt.

You can take r(t) = 〈cos t, sin t, cos t sin t〉 with 0 ≤ t ≤ 2π. At the very end you will
need the trig identity 2 cos2 t = 1 + cos(2t).]



(a): Let F(x, y, z) = 〈−y, x, 1〉 = 〈P,Q,R〉. Then the curl is

∇× F = 〈Ry −Qz, Pz −Rx, Qx − Py〉
= 〈(1)y − (x)z, (−y)z − (1)x, (x)x − (−y)y〉
= 〈0− 0, 0− 0, 1− (−1)〉
= 〈0, 0, 2〉.

The curl is constant and non-zero.

(b): From the previous homework we have ru × rv = 〈−u2 sin v,−u2 cos v, u〉, so the flux of F
across the surface r(u, v) with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π is∫∫

D
(∇× F) •NdA =

∫∫
(∇× F)(r(u, v)) • (ru × rv) dudv

=

∫∫
〈0, 0, 2〉 • 〈−u2 sin v,−u2 cos v, u〉 dudv

=

∫∫
2u dudv

= 2

∫ 2π

0
dv

∫ 1

0
u du

= 2(2π)(1/2)

= 2π.

(c): The boundary curve of D can be parametrized by r(t) = 〈cos t, sin t, cos t sin t〉 with
0 ≤ t ≤ 2π. The velocity of this parametrization is

r′(t) = 〈− sin t, cos t, cos2 t− sin2 t〉.
Hence the circulation of F around the curve is∫

F(r(t)) • r′(t) dt =

∫
F(cos t, sin t, cos t sin t) • 〈− sin t, cos t, cos2 t− sin2 t〉 dt

=

∫
〈− sin t, cos t, 1〉 • 〈− sin t, cos t, cos2 t− sin2〉 dt

=

∫
[(− sin t)(− sin t) + (cos t)(cos t) + (1)(cos2 t− sin2 t)] dt

=

∫
[sin2 t+ cos2 t+ cos2 t− sin2 t] dt

=

∫
2 cos2 t dt

=

∫
[1 + cos(2t)] dt

=

[
t+

1

2
sin(2t)

]2π
0

= (2π + 0)− (0 + 0)

= 2π,

which is equal to our answer from part (b), as required by Stokes’ Theorem.


