1. Integrating a Scalar Along a Parabola. Let $C$ be the portion of the parabola $y=x^{2}$ between points $(0,0)$ and $(1,1)$, and consider the scalar function $f(x, y)=x$. Compute the integral of $f$ along $C$ :

$$
\int_{C} f d s .
$$

[Hint: You must choose a parametrization of $C$. I recommend $\mathbf{r}(t)=\left(t, t^{2}\right)$ with $0 \leq t \leq 1$. The resulting integral may be computed by hand using substitution.]
2. Projection. Let $\mathbf{F}$ and $\mathbf{u}$ be any vectors with $\|\mathbf{u}\|=1$ and let $\mathbf{p}$ be the component of $\mathbf{F}$ in the direction of the unit vector $\mathbf{u}$.
(a) Since $\mathbf{p}$ is parallel to $\mathbf{u}$ we know that $\mathbf{p}=t \mathbf{u}$ for some scalar $t$. Use the fact that the vector $\mathbf{p}-\mathbf{F}$ is perpendicular to $\mathbf{u}$ to prove that $t=\mathbf{F} \bullet \mathbf{u}$.
(b) Draw a picture showing the vectors $\mathbf{F}, \mathbf{u}$ and $\mathbf{p}$.
3. Integrating Vector Fields Along Different Curves. By definition, the integral of a vector field $\mathbf{F}$ along a parametrized curve $\mathbf{r}(t)$ is

$$
\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t
$$

Consider the two fields $\mathbf{F}(x, y)=\left\langle 2 x y, x^{2}\right\rangle, \mathbf{G}(x, y)=\left\langle 2 y, x^{2}\right\rangle$, and the two different curves $\mathbf{r}(t)=(t, t)$ and $\mathbf{s}(t)=\left(t, t^{2}\right)$ between the points $(0,0)$ and $(1,1)$.
(a) Integrate $\mathbf{F}$ along $\mathbf{r}(t)$ and $\mathbf{s}(t)$. Observe that you get the same answer.
(b) Integrate $\mathbf{G}$ along $\mathbf{r}(t)$ and $\mathbf{s}(t)$. Observe that you don't get the same answer.
4. Area of a Pringle. Let $D$ be the surface in $\mathbb{R}^{3}$ defined by $z=x y$ and $x^{2}+y^{2} \leq 1$, which looks like a pringle chip. We can parametrize this region by

$$
\mathbf{r}(u, v)=\langle u \cos v, u \sin v,(u \cos v)(u \sin v)\rangle
$$

with $0 \leq u \leq 1$ and $0 \leq v \leq 2 \pi$.
(a) Compute the tangent vectors $\mathbf{r}_{u}$ and $\mathbf{r}_{v}$. [Hint: Use the identity $\sin (2 v)=2 \sin v \cos v$.]
(b) Compute the cross product $\mathbf{r}_{u} \times \mathbf{r}_{v}$.
(c) Compute the length $\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|$ and simplify as much as possible. [Hint: The answer is $\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|=u \sqrt{u^{2}+1}$. $]$
(d) Use your answer from part (c) to compute the area of the pringle:

$$
\operatorname{Area}(D)=\iint_{D} 1\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v
$$

5. Proof of Conservation of Energy. A conservative force field $\mathbf{F}$ has the form $\mathbf{F}=-\nabla f$ for some scalar potential $f$. Suppose that a particle of mass $m$ travels along a trajectory $\mathbf{r}(t)$. Newton says that the force $\mathbf{F}$ acting on the particle satisties

$$
\mathbf{F}(\mathbf{r}(t))=m \mathbf{r}^{\prime \prime}(t) .
$$

The kinetic energy of the particle at time $t$ is $\operatorname{KE}(t)=\frac{1}{2} m\left\|\mathbf{r}^{\prime}(t)\right\|^{2}$, the potential energy at time $t$ is $\mathrm{PE}(t)=f(\mathbf{r}(t))$, and the total mechanical energy is $E(t)=\mathrm{KE}(t)+\mathrm{PE}(t)$. Use the chain rule and product rule for derivatives to show that

$$
E^{\prime}(t)=0 .
$$

[Hint: Write $\left\|\mathbf{r}^{\prime}(t)\right\|^{2}=\mathbf{r}^{\prime}(t) \bullet \mathbf{r}^{\prime}(t)$.]
6. Application of Conservation of Energy. Choose a coordinate system in $\mathbb{R}^{3}$ with the sun at position $(0,0,0)$. Suppose that the sun has mass $M$. If $\mathbf{F}(x, y, z)$ is the gravitational force exerted by the sun on a spaceship of mass $m$ at position $(x, y, z)$, Newton tells us that $\mathbf{F}(x, y, z)=-\nabla f(x, y, z)$, wher ${ }^{\top}$

$$
f(x, y, z)=-1 \cdot \frac{G M m}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

is called the gravitational potential. At a certain time, the spaceship has speed $s_{0}$ and distance $d_{0}$ from the origin. At a later time the spaceship has speed $s_{1}$ and distance $d_{1}$ from the origin. Use conservation of energy to compute $s_{1}$ in terms of $s_{0}, d_{0}$ and $d_{1}$. (Assume that no other forces are acting on the spaceship.)

[^0]
[^0]:    ${ }^{1} G$ is a constant of nature called the gravitational constant.

