1. Integrating a Scalar Along a Parabola. Let C be the portion of the parabola $y = x^2$ between points (0,0) and (1,1), and consider the scalar function f(x,y) = x. Compute the integral of f along C:

$$\int_C f \, ds.$$

[Hint: You must choose a parametrization of C. I recommend $\mathbf{r}(t) = (t, t^2)$ with $0 \le t \le 1$. The resulting integral may be computed by hand using substitution.]

2. Projection. Let **F** and **u** be any vectors with $||\mathbf{u}|| = 1$ and let **p** be the *component of* **F** *in the direction of the unit vector* **u**.

- (a) Since **p** is parallel to **u** we know that $\mathbf{p} = t\mathbf{u}$ for some scalar t. Use the fact that the vector $\mathbf{p} \mathbf{F}$ is perpendicular to **u** to prove that $t = \mathbf{F} \bullet \mathbf{u}$.
- (b) Draw a picture showing the vectors **F**, **u** and **p**.

3. Integrating Vector Fields Along Different Curves. By definition, the integral of a vector field **F** along a parametrized curve $\mathbf{r}(t)$ is

$$\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}'(t) \, dt.$$

Consider the two fields $\mathbf{F}(x, y) = \langle 2xy, x^2 \rangle$, $\mathbf{G}(x, y) = \langle 2y, x^2 \rangle$, and the two different curves $\mathbf{r}(t) = (t, t)$ and $\mathbf{s}(t) = (t, t^2)$ between the points (0, 0) and (1, 1).

- (a) Integrate **F** along $\mathbf{r}(t)$ and $\mathbf{s}(t)$. Observe that you get the same answer.
- (b) Integrate **G** along $\mathbf{r}(t)$ and $\mathbf{s}(t)$. Observe that you don't get the same answer.

4. Area of a Pringle. Let *D* be the surface in \mathbb{R}^3 defined by z = xy and $x^2 + y^2 \leq 1$, which looks like a pringle chip. We can parametrize this region by

 $\mathbf{r}(u,v) = \langle u\cos v, u\sin v, (u\cos v)(u\sin v) \rangle$

with $0 \le u \le 1$ and $0 \le v \le 2\pi$.

- (a) Compute the tangent vectors \mathbf{r}_u and \mathbf{r}_v . [Hint: Use the identity $\sin(2v) = 2\sin v \cos v$.]
- (b) Compute the cross product $\mathbf{r}_u \times \mathbf{r}_v$.
- (c) Compute the length $\|\mathbf{r}_u \times \mathbf{r}_v\|$ and simplify as much as possible. [Hint: The answer is $\|\mathbf{r}_u \times \mathbf{r}_v\| = u\sqrt{u^2 + 1}$.]
- (d) Use your answer from part (c) to compute the area of the pringle:

Area
$$(D) = \iint_D 1 \|\mathbf{r}_u \times \mathbf{r}_v\| \, du dv.$$

5. Proof of Conservation of Energy. A conservative force field \mathbf{F} has the form $\mathbf{F} = -\nabla f$ for some scalar potential f. Suppose that a particle of mass m travels along a trajectory $\mathbf{r}(t)$. Newton says that the force \mathbf{F} acting on the particle satisfies

$$\mathbf{F}(\mathbf{r}(t)) = m\mathbf{r}''(t).$$

The kinetic energy of the particle at time t is $\text{KE}(t) = \frac{1}{2}m \|\mathbf{r}'(t)\|^2$, the potential energy at time t is $\text{PE}(t) = f(\mathbf{r}(t))$, and the total mechanical energy is E(t) = KE(t) + PE(t). Use the chain rule and product rule for derivatives to show that

$$E'(t) = 0.$$

[Hint: Write $\|\mathbf{r}'(t)\|^2 = \mathbf{r}'(t) \bullet \mathbf{r}'(t)$.]

6. Application of Conservation of Energy. Choose a coordinate system in \mathbb{R}^3 with the sun at position (0,0,0). Suppose that the sun has mass M. If $\mathbf{F}(x,y,z)$ is the gravitational force exerted by the sun on a spaceship of mass m at position (x, y, z), Newton tells us that $\mathbf{F}(x, y, z) = -\nabla f(x, y, z)$, where¹

$$f(x, y, z) = -1 \cdot \frac{GMm}{\sqrt{x^2 + y^2 + z^2}}$$

is called the gravitational potential. At a certain time, the spaceship has speed s_0 and distance d_0 from the origin. At a later time the spaceship has speed s_1 and distance d_1 from the origin. Use conservation of energy to compute s_1 in terms of s_0 , d_0 and d_1 . (Assume that no other forces are acting on the spaceship.)

 $^{{}^{1}}G$ is a constant of nature called the *gravitational constant*.