Problem 1. Area of a Parametrized Region. Given a region D in \mathbb{R}^{2}, the area is

$$
\operatorname{Area}(D)=\iint_{D} 1 d x d y
$$

For each of the following problems you should (1) draw the region, (2) find a parametrization, (3) use your parametrization to compute the area.
(a) The half-circle satisfying $x^{2}+y^{2} \leq 4$ and $x \geq 0$. [Hint: Use polar coordinates.]
(b) The region satisfying $x^{2}+y^{2} \leq 4$ and $x \geq 1$. [Hint: Don't use polar coordinates. You will need the antiderivative

$$
\left.\int 2 \sqrt{4-x^{2}} d x=x \sqrt{4-x^{2}}+4 \arcsin (x / 2) \cdot\right]
$$

(a): In this case D is the right half of a circle of radius 2 :

We parametrize D using polar coordinates with $0 \leq r \leq 2$ and $-\pi / 2 \leq \theta \leq \pi / 2$. The area is

$$
\begin{aligned}
\iint 1 d x d y & =\iint r d r d \theta \\
& \int_{-\pi / 2}^{\pi / 2} 1 d \theta \int_{0}^{2} r d r \\
& =[\theta]_{\theta=-\pi / 2}^{\theta=\pi / 2}\left[\frac{1}{2} r^{2}\right]_{r=0}^{r=2} \\
& =\left[\frac{\pi}{2}+\frac{\pi}{2}\right]\left[\frac{1}{2} 2^{2}\right] \\
& =2 \pi .
\end{aligned}
$$

Note that this agrees with the formula $\pi(2)^{2}=4 \pi$ for the area of the full circle.
(b): Here is a picture of the region D :

We can parametrize this region by $1 \leq x \leq 2$ and $-\sqrt{4-x^{2}} \leq x \leq \sqrt{4-x^{2}}$. The area is

$$
\begin{aligned}
\iint 1 d x d y & =\int_{1}^{2}\left(\int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} 1 d y\right) d x \\
& =\int_{1}^{2}[y]_{y=-\sqrt{4-x^{2}}}^{y=\sqrt{4-x^{2}}} d x \\
& =\int_{1}^{2} 2 \sqrt{4-x^{2}} d x \\
& =\left[x \sqrt{4-x^{2}}+4 \arcsin (x / 2)\right]_{x=1}^{x=2} \\
& =2 \sqrt{4-2^{2}}+4 \arcsin (2 / 2)-1 \sqrt{4-1^{2}}-4 \arcsin (1 / 2) \\
& =0+4 \arcsin (1)-\sqrt{3}-4 \arcsin (1 / 2) \\
& =0+4(\pi / 2)-\sqrt{3}-4(\pi / 6) \\
& =4 \pi / 3-\sqrt{3} .
\end{aligned}
$$

Remark: It is also possible (but more difficult) to parametrize this region using polar coordinates. Consider the following picture:

The picture shows that $-\pi / 3 \leq \theta \leq \pi / 3$ and $1 / \cos \theta \leq r \leq 2$, so the area is

$$
\iint 1 d x d y=\iint r d r d \theta
$$

$$
\begin{aligned}
& =\int_{-\pi / 3}^{\pi / 3}\left(\int_{1 / \cos \theta}^{2} r d r\right) d \theta \\
& =\int_{-\pi / 3}^{\pi / 3}\left[\frac{1}{2} r^{2}\right]_{r=1 / \cos \theta}^{r=2} d \theta \\
& =\int_{-\pi / 2}^{\pi / 3}\left[2-\frac{1}{2 \cos ^{2} \theta}\right] d \theta \\
& =\left[2 \theta-\frac{\tan \theta}{2}\right]_{\theta=-\pi / 3}^{\theta=\pi / 3} \\
& =2\left[\frac{\pi}{3}+\frac{\pi}{3}\right]-\frac{1}{2}[\tan (\pi / 3)-\tan (-\pi / 3)] \\
& =2\left[\frac{2 \pi}{3}\right]-\frac{1}{2}[\sqrt{3}+\sqrt{3}] \\
& =4 \pi / 3-\sqrt{3} .
\end{aligned}
$$

The fact that we got the same answer each time means that the calculations are probably correct. This problem can also be solved without Calculus:
https://en.wikipedia.org/wiki/Circular_segment\#Arc_length_and_area
Problem 2. Center of Mass of a 2D Region. Let D be the region parametrized by $0 \leq x \leq 2$ and $x \leq y \leq 5 x-2 x^{2}$. Think of D as a solid with mass density 1 .
(a) Compute the total mass $M=\iint_{D} 1 d x d y$.
(b) Compute the moments $M_{x}=\iint_{D} x d x d y$ and $M_{y}=\iint_{D} y d x d y$.
(c) Compute the center of mass.
(d) Draw the region and its center of mass.
(a): The mass (i.e., the area) of the region D is

$$
\begin{aligned}
M & =\iint_{D} 1 d x d y \\
& =\int_{0}^{2}\left(\int_{x}^{5 x-2 x^{2}} 1 d y\right) d x \\
& =\int_{0}^{2}\left(5 x-2 x^{2}-x\right) d x \\
& =\int_{0}^{2}\left(4 x-2 x^{2}\right) d x \\
& =\left[4 \frac{1}{2} x^{2}-2 \frac{1}{3} x^{3}\right]_{0}^{2} \\
& =4 \frac{1}{2} 2^{2}-2 \frac{1}{3} 2^{3} \\
& =8 / 3
\end{aligned}
$$

(b): The moment in the x direction is

$$
M_{x}=\iint_{D} x d x d y
$$

$$
\begin{aligned}
& =\int_{0}^{2}\left(\int_{x}^{5 x-2 x^{2}} x d y\right) d x \\
& =\int_{0}^{2}[x y]_{y=x}^{y=5 x-2 x^{2}} d x \\
& =\int_{0}^{2}\left[x\left(5 x-2 x^{2}\right)-x^{2}\right] d x \\
& =\int_{0}^{2}\left[4 x^{2}-2 x^{3}\right] d x \\
& =\left[4 \frac{1}{3} x^{3}-2 \frac{1}{4} x^{4}\right]_{0}^{2} \\
& =4 \frac{1}{3} 2^{3}-2 \frac{1}{4} 2^{4} \\
& =8 / 3
\end{aligned}
$$

It is just a coincidence that $M_{x}=M$. The moment in the y direction is

$$
\begin{aligned}
M_{y} & =\iint_{D} y d x d y \\
& =\int_{0}^{2}\left(\int_{x}^{5 x-2 x^{2}} y d y\right) d x \\
& =\int_{0}^{2}\left[\frac{1}{2} y^{2}\right]_{y=x}^{y=5 x-2 x^{2}} d x \\
& =\frac{1}{2} \int_{0}^{2}\left[\left(5 x-2 x^{2}\right)^{2}-x^{2}\right] d x \\
& =\frac{1}{2} \int_{0}^{2}\left[4 x^{4}-20 x^{3}+24 x^{2}\right] d x \\
& =\frac{1}{2}\left[4 \frac{1}{5} x^{5}-20 \frac{1}{4} x^{4}+24 \frac{1}{3} x^{3}\right]_{0}^{2} \\
& =\frac{1}{2}\left(4 \frac{1}{5} 2^{5}-20 \frac{1}{4} 2^{4}+24 \frac{1}{3} 2^{3}\right) \\
& =24 / 5
\end{aligned}
$$

(c): The center of mass is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{x}}{M}, \frac{M_{y}}{M}\right)=\left(\frac{8 / 3}{8 / 3}, \frac{24 / 5}{8 / 3}\right)=\left(1, \frac{9}{5}\right)=(1,1.8)
$$

(d): Here is a picture:

Problem 3. Polar Coordinates. Let $x=r \cos \theta$ and $y=r \sin \theta$. We already know that

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\operatorname{det}\left(\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right)=r .
$$

The general theory predicts that we must also have

$$
\frac{\partial(r, \theta)}{\partial(x, y)}=\operatorname{det}\left(\begin{array}{ll}
r_{x} & r_{y} \\
\theta_{x} & \theta_{y}
\end{array}\right)=\frac{1}{r} .
$$

Check that this is true. [Hint: $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\arctan (y / x)$.]
First we compute the derivatives using the one variable chain rule:

$$
\begin{aligned}
& r_{x}=(1 / 2)\left(x^{2}+y^{2}\right)^{-1 / 2}(2 x)=x\left(x^{2}+y^{2}\right)^{-1 / 2}, \\
& r_{x}=(1 / 2)\left(x^{2}+y^{2}\right)^{-1 / 2}(2 y)=y\left(x^{2}+y^{2}\right)^{-1 / 2}, \\
& \theta_{x}=1 /\left(1+(y / x)^{2}\right)\left(-y / x^{2}\right), \\
& \theta_{y}=1 /\left(1+(y / x)^{2}\right)(1 / x) .
\end{aligned}
$$

The formulas for θ_{x} and θ_{y} can be simplified using $1 /\left(1+(y / x)^{2}\right)=x^{2} /\left(x^{2}+y^{2}\right)$ to get

$$
\begin{aligned}
\theta_{x} & =x^{2} /\left(x^{2}+y^{2}\right)\left(-y / x^{2}\right)=-y /\left(x^{2}+y^{2}\right), \\
\theta_{y} & =x^{2} /\left(x^{2}+y^{2}\right)(1 / x)=x /\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

Then we compute the determinant:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
r_{x} & r_{y} \\
\theta_{x} & \theta_{y}
\end{array}\right) & =r_{x} \theta_{y}--r_{y} \theta_{x} \\
& =x\left(x^{2}+y^{2}\right)^{-1 / 2} x /\left(x^{2}+y^{2}\right)+y\left(x^{2}+y^{2}\right)^{-1 / 2} y /\left(x^{2}+y^{2}\right) \\
& =x^{2}\left(x^{2}+y^{2}\right)^{-3 / 2}+y^{2}\left(x^{2}+y^{2}\right)^{-3 / 2} \\
& =\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)^{-3 / 2} \\
& =\left(x^{2}+y^{2}\right)^{-1 / 2} \\
& =1 / \sqrt{x^{2}+y^{2}} \\
& =1 / r .
\end{aligned}
$$

That was weirdly complicated, but we got the right answer.

Problem 4. Center of Mass of a 3D Region. Let D be the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$. Think of D as a solid with constant mass density 1 . This region can be parametrized by $0 \leq x \leq 1,0 \leq y \leq 1-x$ and $0 \leq z \leq 1-x-y$.
(a) Compute the total mass $M=\iiint_{D} 1 d x d y d z$.
(b) Compute the moments

$$
M_{x}=\iiint_{D} x d x d y d z, \quad M_{y}=\iint_{D} y d x d y d z, \quad M_{z}=\iiint_{D} z d x d y d z .
$$

[Hint: There might be a shortcut.]
(c) Compute the center of mass.
(a): The total mass (i.e., the volume) is

$$
\begin{aligned}
M & =\iiint_{D} 1 d x d y d z \\
& =\int_{0}^{1}\left(\int_{0}^{1-x}\left(\int_{0}^{1-x-y} 1 d z\right) d y\right) d x \\
& =\int_{0}^{1}\left(\int_{0}^{1-x}(1-x-y) d y\right) d x \\
& =\int_{0}^{1}\left[y-x y-\frac{1}{2} y^{2}\right]_{0}^{1-x} d x \\
& =\int_{0}^{1}\left[(1-x)-x(1-x)-\frac{1}{2}(1-x)^{2}\right] d x \\
& =\int_{0}^{1}\left[\frac{1}{2} x^{2}-x+\frac{1}{2}\right] d x \\
& =\left[\frac{1}{2} \frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{2} x\right]_{0}^{1} \\
& =\frac{1}{2} \frac{1}{3}-\frac{1}{2}+\frac{1}{2} \\
& =1 / 6 .
\end{aligned}
$$

(b): Because the shape D is symmetric under permuting x, y, z we know that $M_{x}=M_{y}=M_{z}$. It turns out that M_{x} is easiest to compute:

$$
\begin{aligned}
M_{x} & =\iiint_{D} x d x d y d z \\
& =\int_{0}^{1} x\left(\int_{0}^{1-x}\left(\int_{0}^{1-x-y} 1 d z\right) d y\right) d x \\
& =\int_{0}^{1} x\left(\int_{0}^{1-x}(1-x-y) d y\right) d x \\
& =\int_{0}^{1} x\left[y-x y-\frac{1}{2} y^{2}\right]_{0}^{1-x} d x \\
& =\int_{0}^{1} x\left[(1-x)-x(1-x)-\frac{1}{2}(1-x)^{2}\right] d x \\
& =\int_{0}^{1} x\left[\frac{1}{2} x^{2}-x+\frac{1}{2}\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left[\frac{1}{2} x^{3}-x^{2}+\frac{1}{2} x\right] d x \\
& =\left[\frac{1}{2} \frac{1}{4} x^{4}-\frac{1}{3} x^{3}+\frac{1}{2} \frac{1}{2} x^{2}\right]_{0}^{1} \\
& =\frac{1}{2} \frac{1}{4}-\frac{1}{3}+\frac{1}{2} \frac{1}{2} \\
& =1 / 24 .
\end{aligned}
$$

(c): The center of mass is

$$
(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{x}}{M}, \frac{M_{y}}{M}, \frac{M_{z}}{M}\right)=\left(\frac{1 / 24}{1 / 6}, \frac{1 / 24}{1 / 6}, \frac{1 / 24}{1 / 6}\right)=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) .
$$

Remark: Consider the solid n-dimensional "simplex" with $n+1$ vertices:

$$
(0, \ldots, 0),(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1) .
$$

Using the same method, one can show that the n-dimensional "hypervolume" is $1 / n$! and the center of mass is $(1,1, \ldots, 1) /(n+1)$. However, as you can imagine, the computation is messy.

Problem 5. Cylindrical Coordinates. Let D be a solid cone of radius 1 and height 1 . We can think of this as the solid region defined by $x^{2}+y^{2} \leq 1$ and $0 \leq z \leq 1-\sqrt{x^{2}+y^{2}}$. Use cylindrical coordinates to compute the integral

$$
\iiint_{D} z d x d y d z
$$

[Hint: Cylindrical coordinates are defined by $x=r \cos \theta, y=r \sin \theta, z=z$, and satisfy $\partial(x, y, z) / \partial(r, \theta, z)=r$. That is, $d x d y d z=r d r d \theta d z$.]

In cylindrical coordinates, the cone D has parametrization $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 1-r$. Hence

$$
\begin{aligned}
\iiint_{D} z d r d \theta d z & =\iiint_{D} z r d r d \theta d z \\
& =2 \pi \int_{0}^{1} r\left(\int_{0}^{1-r} z d z\right) d r \\
& =2 \pi \int_{0}^{1} r\left[\frac{1}{2} z^{2}\right]_{0}^{1-r} d r \\
& =2 \pi \int_{0}^{1} r(1-r)^{2} d r \\
& =\pi \int_{0}^{1}\left[r^{3}-2 r^{2}+r\right] d r \\
& =\pi\left[\frac{1}{4} r^{4}-2 \frac{1}{3} r^{3}+\frac{1}{2} r^{2}\right]_{0}^{1} \\
& \pi\left(\frac{1}{4}-\frac{2}{3}+\frac{1}{2}\right) \\
& =\pi / 12
\end{aligned}
$$

Remark: If the cone has uniform density 1 then we just computed M_{z}. The volume of a cone is $(1 / 3) \pi(\text { radius })^{2}($ height $)=\pi / 3$ and by symmetry we have $M_{x}=M_{y}=0$, hence the center of mass of the cone is

$$
(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{x}}{M}, \frac{M_{y}}{M}, \frac{M_{z}}{M}\right)=\left(0,0, \frac{\pi / 12}{\pi / 3}\right)=\left(0,0, \frac{1}{4}\right) .
$$

That is, the center of mass on the main axis at $1 / 4$ of the height. This same result holds for any cone of any radius and height.

Problem 6. Spherical coordinates ρ, ϕ, θ are defined by

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta, \\
& y=\rho \sin \phi \sin \theta, \\
& z=\rho \cos \phi,
\end{aligned}
$$

and satisfy $\partial(x, y, z) / \partial(r, \phi, \theta)=\rho^{2} \sin \phi$. That is, $d x d y d z=\rho^{2} \sin \phi d \rho d \phi d \theta$. Use spherical coordinates to compute the integral

$$
\iiint_{D} \frac{1}{x^{2}+y^{2}+z^{2}} d x d y d z
$$

where D is the unit sphere. Even though the function $f(x, y, z)=1 /\left(x^{2}+y^{2}+z^{2}\right)$ goes to infinity when $(x, y, z) \rightarrow(0,0,0)$, the integral is still finite.

$$
\begin{aligned}
\iiint_{D} \frac{1}{x^{2}+y^{2}+z^{2}} d x d y d z & =\iiint_{D} \frac{1}{\rho^{2}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\iiint_{D} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} 1 d \theta \int_{0}^{\rho} 1 d \rho \int_{0}^{\pi} \sin \phi d \phi \\
& =2 \pi[-\cos \phi]_{0}^{\pi} \\
& =2 \pi[-\cos (\pi)+\cos (0)] \\
& =2 \pi[-(-1)+(1)] \\
& =4 \pi
\end{aligned}
$$

Remark: This looked like the hardest problem on HW4, but it was actually the easiest!
Remark: The analogous integral in one dimension is $\int_{-1}^{1}\left(1 / x^{2}\right) d x$, which diverges. The analogous integral in two dimensions also diverges:

$$
\begin{aligned}
\iint_{\text {unit disk }} \frac{1}{x^{2}+y^{2}} d x d y & =\iint \frac{1}{r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1} \frac{1}{r} d r \\
& =2 \pi[\ln (1)-\ln (0)] \\
& =2 \pi[0-(-\infty)] \\
& =\infty
\end{aligned}
$$

For some reason the three dimensional version converges. We will observe the same type of phenomenon when we study gravity.

