
Math 310 Spring 2024
Homework 4 Drew Armstrong

Problem 1. Area of a Parametrized Region. Given a region D in R2, the area is

Area(D) =

∫∫
D

1 dxdy.

For each of the following problems you should (1) draw the region, (2) find a parametrization,
(3) use your parametrization to compute the area.

(a) The half-circle satisfying x2 + y2 ≤ 4 and x ≥ 0. [Hint: Use polar coordinates.]
(b) The region satisfying x2 + y2 ≤ 4 and x ≥ 1. [Hint: Don’t use polar coordinates. You

will need the antiderivative∫
2
√

4− x2 dx = x
√

4− x2 + 4 arcsin(x/2).]

(a): In this case D is the right half of a circle of radius 2:

We parametrize D using polar coordinates with 0 ≤ r ≤ 2 and −π/2 ≤ θ ≤ π/2. The area is∫∫
1 dxdy =

∫∫
r drdθ∫ π/2

−π/2
1 dθ

∫ 2

0
r dr

= [θ]
θ=π/2
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=
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= 2π.

Note that this agrees with the formula π(2)2 = 4π for the area of the full circle.

(b): Here is a picture of the region D:



We can parametrize this region by 1 ≤ x ≤ 2 and −
√

4− x2 ≤ x ≤
√

4− x2. The area is∫∫
1 dxdy =

∫ 2

1

(∫ √4−x2
−
√
4−x2

1 dy

)
dx

=

∫ 2

1
[y]y=

√
4−x2

y=−
√
4−x2 dx

=

∫ 2

1
2
√

4− x2 dx

=
[
x
√

4− x2 + 4 arcsin(x/2)
]x=2

x=1

= 2
√

4− 22 + 4 arcsin(2/2)− 1
√

4− 12 − 4 arcsin(1/2)

= 0 + 4 arcsin(1)−
√

3− 4 arcsin(1/2)

= 0 + 4(π/2)−
√

3− 4(π/6)

= 4π/3−
√

3.

Remark: It is also possible (but more difficult) to parametrize this region using polar coordi-
nates. Consider the following picture:

The picture shows that −π/3 ≤ θ ≤ π/3 and 1/ cos θ ≤ r ≤ 2, so the area is∫∫
1 dxdy =

∫∫
r drdθ



=

∫ π/3

−π/3

(∫ 2

1/ cos θ
r dr

)
dθ

=

∫ π/3

−π/3

[
1

2
r2
]r=2

r=1/ cos θ

dθ

=

∫ π/3

−π/2

[
2− 1

2 cos2 θ

]
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=
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2θ − tan θ

2

]θ=π/3
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− 1

2
[tan(π/3)− tan(−π/3)]

= 2

[
2π

3

]
− 1

2

[√
3 +
√

3
]

= 4π/3−
√

3.

The fact that we got the same answer each time means that the calculations are probably
correct. This problem can also be solved without Calculus:

https://en.wikipedia.org/wiki/Circular_segment#Arc_length_and_area

Problem 2. Center of Mass of a 2D Region. Let D be the region parametrized by
0 ≤ x ≤ 2 and x ≤ y ≤ 5x− 2x2. Think of D as a solid with mass density 1.

(a) Compute the total mass M =
∫∫
D 1 dxdy.

(b) Compute the moments Mx =
∫∫
D x dxdy and My =

∫∫
D y dxdy.

(c) Compute the center of mass.
(d) Draw the region and its center of mass.

(a): The mass (i.e., the area) of the region D is

M =

∫∫
D

1 dxdy

=

∫ 2

0

(∫ 5x−2x2

x
1 dy

)
dx

=

∫ 2

0

(
5x− 2x2 − x

)
dx

=

∫ 2

0
(4x− 2x2) dx

=

[
4

1

2
x2 − 2

1

3
x3
]2
0

= 4
1

2
22 − 2

1

3
23

= 8/3.

(b): The moment in the x direction is

Mx =

∫∫
D
x dxdy

https://en.wikipedia.org/wiki/Circular_segment#Arc_length_and_area


=

∫ 2

0

(∫ 5x−2x2

x
x dy

)
dx

=

∫ 2

0
[xy]y=5x−2x2

y=x dx

=

∫ 2

0

[
x(5x− 2x2)− x2

]
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=

∫ 2

0

[
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]
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=

[
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3
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4
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= 4
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3
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4
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= 8/3.

It is just a coincidence that Mx = M . The moment in the y direction is

My =

∫∫
D
y dxdy

=

∫ 2

0

(∫ 5x−2x2

x
y dy

)
dx

=

∫ 2

0

[
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2
y2
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y=x

dx

=
1
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∫ 2

0

[
(5x− 2x2)2 − x2

]
dx

=
1
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∫ 2

0

[
4x4 − 20x3 + 24x2

]
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=
1
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]2
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=
1
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(
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5
25 − 20
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4
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3
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= 24/5.

(c): The center of mass is

(x̄, ȳ) =

(
Mx

M
,
My

M

)
=

(
8/3

8/3
,
24/5

8/3

)
=

(
1,

9

5

)
= (1, 1.8).

(d): Here is a picture:



Problem 3. Polar Coordinates. Let x = r cos θ and y = r sin θ. We already know that

∂(x, y)

∂(r, θ)
= det

(
xr xθ
yr yθ

)
= r.

The general theory predicts that we must also have

∂(r, θ)

∂(x, y)
= det

(
rx ry
θx θy

)
=

1

r
.

Check that this is true. [Hint: r =
√
x2 + y2 and θ = arctan(y/x).]

First we compute the derivatives using the one variable chain rule:

rx = (1/2)(x2 + y2)−1/2(2x) = x(x2 + y2)−1/2,

rx = (1/2)(x2 + y2)−1/2(2y) = y(x2 + y2)−1/2,

θx = 1/(1 + (y/x)2)(−y/x2),
θy = 1/(1 + (y/x)2)(1/x).

The formulas for θx and θy can be simplified using 1/(1 + (y/x)2) = x2/(x2 + y2) to get

θx = x2/(x2 + y2)(−y/x2) = −y/(x2 + y2),

θy = x2/(x2 + y2)(1/x) = x/(x2 + y2).

Then we compute the determinant:

det

(
rx ry
θx θy

)
= rxθy −−ryθx

= x(x2 + y2)−1/2x/(x2 + y2) + y(x2 + y2)−1/2y/(x2 + y2)

= x2(x2 + y2)−3/2 + y2(x2 + y2)−3/2

= (x2 + y2)(x2 + y2)−3/2

= (x2 + y2)−1/2

= 1/
√
x2 + y2

= 1/r.

That was weirdly complicated, but we got the right answer.



Problem 4. Center of Mass of a 3D Region. Let D be the tetrahedron with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). Think of D as a solid with constant mass density 1.
This region can be parametrized by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x and 0 ≤ z ≤ 1− x− y.

(a) Compute the total mass M =
∫∫∫

D 1 dxdydz.
(b) Compute the moments

Mx =

∫∫∫
D
x dxdydz, My =

∫∫
D
y dxdydz, Mz =

∫∫∫
D
z dxdydz.

[Hint: There might be a shortcut.]
(c) Compute the center of mass.

(a): The total mass (i.e., the volume) is

M =

∫∫∫
D

1 dxdydz

=

∫ 1

0

(∫ 1−x

0

(∫ 1−x−y

0
1 dz

)
dy

)
dx

=

∫ 1

0
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0
(1− x− y) dy

)
dx

=

∫ 1

0

[
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2
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0

dx

=

∫ 1

0

[
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2
(1− x)2

]
dx

=

∫ 1

0

[
1

2
x2 − x+

1

2

]
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=

[
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1

3
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2
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x

]1
0

=
1

2

1

3
− 1

2
+

1

2
= 1/6.

(b): Because the shape D is symmetric under permuting x, y, z we know that Mx = My = Mz.
It turns out that Mx is easiest to compute:

Mx =

∫∫∫
D
x dxdydz

=

∫ 1

0
x

(∫ 1−x

0

(∫ 1−x−y

0
1 dz

)
dy

)
dx

=

∫ 1

0
x

(∫ 1−x

0
(1− x− y) dy

)
dx

=

∫ 1

0
x

[
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2
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0

dx

=

∫ 1

0
x

[
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2
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]
dx

=

∫ 1
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x

[
1

2
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1
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=

∫ 1

0

[
1

2
x3 − x2 +
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]
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=

[
1

2

1

4
x4 − 1

3
x3 +

1

2

1

2
x2
]1
0

=
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2
= 1/24.

(c): The center of mass is

(x̄, ȳ, z̄) =

(
Mx

M
,
My

M
,
Mz

M

)
=

(
1/24

1/6
,
1/24

1/6
,
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)
=

(
1

4
,
1

4
,
1

4

)
.

Remark: Consider the solid n-dimensional “simplex” with n+ 1 vertices:

(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

Using the same method, one can show that the n-dimensional “hypervolume” is 1/n! and the
center of mass is (1, 1, . . . , 1)/(n+1). However, as you can imagine, the computation is messy.

Problem 5. Cylindrical Coordinates. Let D be a solid cone of radius 1 and height 1. We

can think of this as the solid region defined by x2 + y2 ≤ 1 and 0 ≤ z ≤ 1 −
√
x2 + y2. Use

cylindrical coordinates to compute the integral∫∫∫
D
z dxdydz.

[Hint: Cylindrical coordinates are defined by x = r cos θ, y = r sin θ, z = z, and satisfy
∂(x, y, z)/∂(r, θ, z) = r. That is, dxdydz = r drdθdz.]

In cylindrical coordinates, the cone D has parametrization 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π and
0 ≤ z ≤ 1− r. Hence ∫∫∫

D
z drdθdz =

∫∫∫
D
zr drdθdz

= 2π

∫ 1

0
r

(∫ 1−r

0
z dz

)
dr

= 2π

∫ 1

0
r

[
1

2
z2
]1−r
0

dr

= 2π

∫ 1

0
r(1− r)2dr

= π

∫ 1

0

[
r3 − 2r2 + r

]
dr

= π

[
1

4
r4 − 2

1

3
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1

2
r2
]1
0

π

(
1

4
− 2

3
+

1

2

)
= π/12.



Remark: If the cone has uniform density 1 then we just computed Mz. The volume of a cone
is (1/3)π(radius)2(height) = π/3 and by symmetry we have Mx = My = 0, hence the center
of mass of the cone is

(x̄, ȳ, z̄) =

(
Mx

M
,
My

M
,
Mz

M

)
=

(
0, 0,

π/12

π/3

)
=

(
0, 0,

1

4

)
.

That is, the center of mass on the main axis at 1/4 of the height. This same result holds for
any cone of any radius and height.

Problem 6. Spherical coordinates ρ, φ, θ are defined by

x = ρ sinφ cos θ,

y = ρ sinφ sin θ,

z = ρ cosφ,

and satisfy ∂(x, y, z)/∂(r, φ, θ) = ρ2 sinφ. That is, dxdydz = ρ2 sinφdρdφdθ. Use spherical
coordinates to compute the integral∫∫∫

D

1

x2 + y2 + z2
dxdydz,

where D is the unit sphere. Even though the function f(x, y, z) = 1/(x2 + y2 + z2) goes to
infinity when (x, y, z)→ (0, 0, 0), the integral is still finite.∫∫∫

D

1

x2 + y2 + z2
dxdydz =

∫∫∫
D

1

ρ2
ρ2 sinφdρdφdθ

=

∫∫∫
D

sinφdρdφdθ

=

∫ 2π

0
1 dθ

∫ ρ

0
1 dρ

∫ π

0
sinφdφ

= 2π [− cosφ]π0
= 2π [− cos(π) + cos(0)]

= 2π [−(−1) + (1)]

= 4π.

Remark: This looked like the hardest problem on HW4, but it was actually the easiest!

Remark: The analogous integral in one dimension is
∫ 1
−1(1/x

2) dx, which diverges. The anal-
ogous integral in two dimensions also diverges:∫∫

unit disk

1

x2 + y2
dxdy =

∫∫
1

r2
r drdθ

=

∫ 2π

0
dθ

∫ 1

0

1

r
dr

= 2π [ln(1)− ln(0)]

= 2π [0− (−∞)]

=∞.
For some reason the three dimensional version converges. We will observe the same type of
phenomenon when we study gravity.


