Problem 1. Area of a Parametrized Region. Given a region D in \mathbb{R}^{2}, the area is

$$
\operatorname{Area}(D)=\iint_{D} 1 d x d y
$$

For each of the following problems you should (1) draw the region, (2) find a parametrization, (3) use your parametrization to compute the area.
(a) The half-circle satisfying $x^{2}+y^{2} \leq 4$ and $x \geq 0$. [Hint: Use polar coordinates.]
(b) The region satisfying $x^{2}+y^{2} \leq 4$ and $x \geq 1$. [Hint: Don't use polar coordinates. You will need the antiderivative

$$
\left.\int 2 \sqrt{4-x^{2}} d x=x \sqrt{4-x^{2}}+4 \arcsin (x / 2) \cdot\right]
$$

Problem 2. Center of Mass of a 2D Region. Let D be the region parametrized by $0 \leq x \leq 2$ and $x \leq y \leq 5 x-2 x^{2}$. Think of D as a solid with mass density 1 .
(a) Compute the total mass $M=\iint_{D} 1 d x d y$.
(b) Compute the moments $M_{x}=\iint_{D} x d x d y$ and $M_{y}=\iint_{D} y d x d y$.
(c) Compute the center of mass.
(d) Draw the region and its center of mass.

Problem 3. Polar Coordinates. Let $x=r \cos \theta$ and $y=r \sin \theta$. We already know that

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\operatorname{det}\left(\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right)=r .
$$

The general theory predicts that we must also have

$$
\frac{\partial(r, \theta)}{\partial(x, y)}=\operatorname{det}\left(\begin{array}{ll}
r_{x} & r_{y} \\
\theta_{x} & \theta_{y}
\end{array}\right)=\frac{1}{r} .
$$

Check that this is true. [Hint: $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\arctan (y / x)$.]
Problem 4. Center of Mass of a 3D Region. Let D be the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$. Think of D as a solid with constant mass density 1. This region can be parametrized by $0 \leq x \leq 1,0 \leq y \leq 1-x$ and $0 \leq z \leq 1-x-y$.
(a) Compute the total mass $M=\iiint_{D} 1 d x d y d z$.
(b) Compute the moments

$$
M_{x}=\iiint_{D} x d x d y d z, \quad M_{y}=\iint_{D} y d x d y d z, \quad M_{z}=\iiint_{D} z d x d y d z .
$$

[Hint: There might be a shortcut.]
(c) Compute the center of mass.

Problem 5. Cylindrical Coordinates. Let D be a solid cone of radius 1 and height 1 . We can think of this as the solid region defined by $x^{2}+y^{2} \leq 1$ and $0 \leq z \leq 1-\sqrt{x^{2}+y^{2}}$. Use cylindrical coordinates to compute the integral

$$
\iiint_{D} z d x d y d z
$$

[Hint: Cylindrical coordinates are defined by $x=r \cos \theta, y=r \sin \theta, z=z$, and satisfy $\partial(x, y, z) / \partial(r, \theta, z)=r$. That is, $d x d y d z=r d r d \theta d z$.]

Problem 6. Spherical coordinates ρ, ϕ, θ are defined by

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta, \\
& y=\rho \sin \phi \sin \theta, \\
& z=\rho \cos \phi,
\end{aligned}
$$

and satisfy $\partial(x, y, z) / \partial(r, \phi, \theta)=\rho^{2} \sin \phi$. That is, $d x d y d z=\rho^{2} \sin \phi d \rho d \phi d \theta$. Use spherical coordinates to compute the integral

$$
\iiint_{D} \frac{1}{x^{2}+y^{2}+z^{2}} d x d y d z
$$

where D is the unit sphere. Even though the function $f(x, y, z)=1 /\left(x^{2}+y^{2}+z^{2}\right)$ goes to infinity when $(x, y, z) \rightarrow(0,0,0)$, the integral is still finite.

