Problem 1. Tangent Lines to Implicit Curves. Consider a curve of the form $f(x, y)=0$ for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Let $\left(x_{0}, y_{0}\right)$ be some point on the curve, so that $f\left(x_{0}, y_{0}\right)=0$. Then the tangent line to this curve at the point $\left(x_{0}, y_{0}\right)$ has equation

$$
\begin{aligned}
\nabla f\left(x_{0}, y_{0}\right) \bullet\left\langle x-x_{0}, y-y_{0}\right\rangle & =0 \\
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) & =0 .
\end{aligned}
$$

Find the equation of the tangent line in the following situations. In each case, use a computer (e.g., desmos.com) to sketch the curve and the line:
(a) $f(x, y)=x^{2}+y^{2}-1$ and $\left(x_{0}, y_{0}\right)=(1,0)$
(b) $f(x, y)=x^{2}+3 y^{2}-1$ and $\left(x_{0}, y_{0}\right)=(1 / 2,1 / 2)$
(c) $f(x, y)=x^{3}+x^{2}-y^{2}$ and $\left(x_{0}, y_{0}\right)=(3,6)$
(d) Try $f(x, y)=x^{3}+x^{2}-y^{2}$ and $\left(x_{0}, y_{0}\right)=(0,0)$. Observe that something goes wrong.
(a): The gradient field is $\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\langle 2 x, 2 y\rangle$. Hence the equation of the tangent line at the point $\left(x_{0}, y_{0}\right)=(1,0)$ is

$$
\begin{aligned}
\nabla f(1,0) \bullet\langle x-1, y-0\rangle & =0 \\
\langle 2(1), 2(0)\rangle \bullet\langle x-1, y-0\rangle & =0 \\
\langle 2,0\rangle \bullet\langle x-1, y-0\rangle & =0 \\
2(x-1)+0(y-0) & =0 \\
2(x-1) & =0 \\
x-1 & =0 \\
x & =1 .
\end{aligned}
$$

Here is a picture:

(b): The gradient field is $\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\langle 2 x, 6 y\rangle$. Hence the equation of the tangent line at the point $\left(x_{0}, y_{0}\right)=(1 / 2,1 / 2)$ is

$$
\begin{aligned}
\nabla f(1 / 2,1 / 2) \bullet\langle x-1 / 2, y-1 / 2\rangle & =0 \\
\langle 2(1 / 2), 6(1 / 2)\rangle \bullet\langle x-1 / 2, y-1 / 2\rangle & =0 \\
\langle 1,3\rangle \bullet\langle x-1 / 2, y-1 / 2\rangle & =0 \\
1(x-1 / 2)+3(y-1 / 2) & =0 \\
x+3 y-1 / 2-3 / 2 & =0 \\
x+3 y-2 & =0 \\
x+3 y & =2 .
\end{aligned}
$$

Here is a picture:

(c): The gradient field is $\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 3 x^{2}+2 x,-2 y\right\rangle$. Hence the equation of the tangent line at the point $\left(x_{0}, y_{0}\right)=(3,6)$ is

$$
\begin{aligned}
\nabla f(3,6) \bullet\langle x-3, y-6\rangle & =0 \\
\left\langle 3(3)^{2}+2(3),-2(6)\right\rangle \bullet\langle x-3, y-6\rangle & =0 \\
\langle 33,-12\rangle \bullet\langle x-3, y-6\rangle & =0 \\
33(x-3)-12(y-6) & =0 \\
33 x-12 y-99+72 & =0 \\
33 x-12 y-27 & =0 \\
33 x-12 y & =27 \\
11 x-4 y & =9 .
\end{aligned}
$$

Here is a picture:

Problem 2. Tangent Plane to an Ellipsoid. A function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defines an implicit surface $f(x, y, z)=0$. If $f\left(x_{0}, y_{0}, z_{0}\right)=0$ then the tangent plane to this surface at the point $\left(x_{0}, y_{0}, z_{0}\right)$ has equation

$$
\begin{aligned}
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \bullet\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle & =0 \\
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+\frac{\partial f}{\partial z}\left(z-z_{0}\right) & =0
\end{aligned}
$$

Suppose that $\left(x_{0}, y_{0}, z_{0}\right)$ is some fixed point on the ellipsoid $a x^{2}+b y^{2}+c z^{2}=1$. Use the above formula to show that the tangent plane to the ellipsoid at $\left(x_{0}, y_{0}, z_{0}\right)$ has equation

$$
a x_{0} x+b y_{0} y+c z_{0} z=1
$$

[Hint: There is a nice simplification.]

The surface $a x^{2}+b y^{2}+c z^{2}=1$ can be expressed as the level surface $f(x, y, z)=0$ where $f(x, y, z)=a x^{2}+b y^{2}+c z^{2}-1$. The gradient field is

$$
\begin{aligned}
\nabla f(x, y, z) & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& =\langle 2 a x, 2 b y, 2 c z\rangle
\end{aligned}
$$

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be any point on the surface $a x^{2}+b y^{2}+c z^{2}=1$, so that $a x_{0}^{2}+b y_{0}^{2}+c z_{0}^{2}=1$. Then the equation of the tangent plane to the surface at this point is

$$
\begin{aligned}
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \bullet\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle & =0 \\
\left\langle 2 a x_{0}, 2 b y_{0}, 2 c z_{0}\right\rangle \bullet\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle & =0 \\
2 a x_{0}\left(x-x_{0}\right)+2 b y_{0}\left(y-y_{0}\right)+2 c z_{0}\left(z-z_{0}\right) & =1 \\
2 a x x_{0}+2 b y y_{0}+2 c z z_{0}-2 a x_{0}^{2}-2 b y_{0}^{2}-2 c z_{0}^{2} & =0 \\
2 a x x_{0}+2 b y y_{0}+2 c z z_{0} & =2 a x_{0}^{2}+2 b y_{0}^{2}+2 c z_{0}^{2} \\
a x x_{0}+b y y_{0}+c z z_{0} & =a x_{0}^{2}+b y_{0}^{2}+c z_{0}^{2} \\
a x x_{0}+b y y_{0}+c z z_{0} & =1 .
\end{aligned}
$$

Isn't that nice?

Problem 3. The Multivariable Chain Rule. Let $f(x, y, z)$ be a function of x, y, z and let $x(t), y(t), z(t)$ be functions of t, so $f(t)=f(x(t), y(t), z(t))$ is also a function of t. The multivariable chain rule says that

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} .
$$

Equivalently, if we think of $\mathbf{r}(t)=(x(t), y(t), z(t))$ as a parametrized path, then we can express the chain in terms of the gradient vector and the dot product:

$$
[f(\mathbf{r}(t))]^{\prime}=\nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t)
$$

(a) Compute $d f / d t$ when $f(x, y)=x y, x(t)=\cos t$ and $y(t)=\sin t$.
(b) Suppose that a path $\mathbf{r}(t)$ satisfies $f(\mathbf{r}(t))=7$ for all t. In this case, prove that the velocity $\mathbf{r}^{\prime}(t)$ is perpendicular to the gradient vector $\nabla f(\mathbf{r}(t))$ at the point $\mathbf{r}(t)$.
(a): If $f(x, y)=x y, x(t)=\cos t$ and $\mathbf{y}(t)=\sin t$ then we have

$$
\begin{aligned}
\partial f / \partial x & =y \\
\partial f / \partial y & =x \\
d x / d t & =-\sin t \\
d y / d t & =\cos t
\end{aligned}
$$

and hence

$$
\begin{aligned}
\frac{d f}{d t} & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
& =(y)(-\sin t)+(x)(\cos t) \\
& =(\sin t)(-\sin t)+(\cos t)(\cos t) \\
& =\cos ^{2} t-\sin ^{2} t \\
& =\cos (2 t) .
\end{aligned}
$$

This can also be computed without the chain rule. First substitute $x(t)$ and $y(t)$ into $f(x, y)$:

$$
f(t)=f(x(t), y(t))=f(\cos t, \sin t)=(\cos t)(\sin t) .
$$

Then differentiate using the product rule:

$$
\begin{aligned}
f^{\prime}(t) & =(\cos t)(\sin t)^{\prime}+(\cos t)^{\prime}(\sin t) \\
& =(\cos t)(\cos t)+(-\sin t)(\sin t) \\
& =\cos ^{2} t-\sin ^{2} t .
\end{aligned}
$$

(b): Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be any scalar function and let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be any path satisfying $f(\mathbf{r}(t))=7$ for all t. Then by the chain rule we have

$$
\begin{aligned}
{[f(\mathbf{r}(t))]^{\prime} } & =[7]^{\prime} \\
\nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) & =0,
\end{aligned}
$$

which tells us that the vectors $\nabla f(\mathbf{r}(t))$ and $\mathbf{r}^{\prime}(t)$ are perpendicular for all t. Geometric meaning: The particle is traveling within the level surface $f=7$, so the velocity vector $\mathbf{r}^{\prime}(t)$ is tangent to this surface at the point $\mathbf{r}(t)$. Since $\nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t)=0$ we conclude that the gradient vector $\nabla f(\mathbf{r}(t))$ is perpendicular to the level surface at the point $\mathbf{r}(t)$. This is the most important fact about gradient vectors.

Problem 4. Gradient Flow. Let $f(x, y, z)$ denote the concentration of krill at point (x, y, z) in the ocean. Suppose you are a whale swimming with trajectory $\mathbf{r}(t)$ and suppose that your speed is constant, say $\left\|\mathbf{r}^{\prime}(t)\right\|=1$.
(a) According to the multivariable chain rule, the rate of change of krill near you is $[f(\mathbf{r}(t))]^{\prime}=\nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t)$. Explain why this rate of change is maximized when your velocity is parallel to the gradient vector $\nabla(\mathbf{f}(t))$. [Hint: Use the dot product theorem $\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$.]
(b) For a simple example, take $f(x, y, z)=x^{2}+x y+y^{2}-z^{2}$. And suppose your current position is $(1,1,1)$. In which direction should you swim in order to maximize your intake of krill?
(a): If the whale travels at constant speed then we have $\left\|\mathbf{r}^{\prime}(t)\right\|=1$. The concentration of krill at the whale's position is $f\left(\mathbf{r}^{\prime}(t)\right)$, hence the rate of change of concentration is

$$
[f(\mathbf{r}(t))]^{\prime}=\nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t)=\|\nabla f(\mathbf{r}(t))\|\left\|\mathbf{r}^{\prime}(t)\right\| \cos \theta=\|\nabla f(\mathbf{r}(t))\| \cos \theta
$$

where θ is the angle between the whale's velocity $\mathbf{r}^{\prime}(t)$ and the krill gradient $\nabla f(\mathbf{r}(t))$ at the whale's position. This quantity is maximized when $\theta=0$, i.e., when the whale is swimming parallel to the gradient.
(b): If $f(x, y, z)=x^{2}+x y+y^{2}-z^{2}$ then we have

$$
\nabla f(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle 2 x+y, x+y^{2},-2 z\right\rangle
$$

If the whale is currently at position $\mathbf{r}(t)=(1,1,1)$ (the value of t is not important) then in order to maximize the intake of krill the whale should swim in the direction of the gradient vector

$$
\nabla f(1,1,1)=\left\langle 2(1)+(1),(1)+(1)^{2},-2(1)\right\rangle=\langle 3,3,-2\rangle .
$$

Problem 5. Linear Approximation. The multivariable chain rule can also be expressed in terms of "linear approximation". Consider a function $f(x, y)$. If the inputs change by small amounts Δx and Δy, then the out put changes by a small amount Δf, which satisfies the following approximation:

$$
\Delta f \approx \frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y
$$

Now consider a cylinder with radius r and height h. Suppose that you measure the radius and the height to be approximately $r=10 \mathrm{~cm}$ and $h=15 \mathrm{~cm}$, so the volume of the cylinder is approximately $V=\pi r^{2} h=\pi(10)^{2}(15)=1500 \pi \mathrm{~cm}^{2}$.
(a) If your ruler has a sensitivity of 0.1 cm , estimate the error in the computed value of V. [Hint: Let $\Delta r=0.1$ and $\Delta h=0.1$. You want to estimate ΔV.]
(b) Find the percent errors in r, h and V. What do you notice?
(a): The volume of the cylinder is $V=\pi r^{2} h$, which is a function of r and h. The linear approximation formula tells us that

$$
\begin{aligned}
\Delta V & \approx V_{r} \Delta r+V_{h} \Delta h \\
& =2 \pi r h \Delta r+\pi r^{2} \Delta h \\
& =\pi\left(2 r h \Delta r+r^{2} \Delta h\right) .
\end{aligned}
$$

If we measure $r=10$ and $h=15$ then our calculated value of V is $\pi(10)^{2}(15)=1500 \pi \mathrm{~cm}^{2}$. If our ruler has sensitivity 0.1 cm then the errors in r and h are $\Delta r=\Delta h=0.1$. Hence the approximate error in our calculated value of V is

$$
\Delta V \approx \pi\left(2(10)(15)(0.1)+(10)^{2}(0.1)\right)=40 \pi
$$

The percent errors in r and h are $\Delta r / r=0.1 / 10=1 \%$ and $\delta h / h=0.1 / 15=0.67 \%$. The percent error in our calculated value of V is $\Delta V / V=40 \pi / 1500 \pi=40 / 1500=2.66 \%$. Note that the percent error of the output is larger than the percent error of the input.

Problem 6. Multivariable Optimization. Consider the scalar field $f(x, y)=x^{3}+x y-y^{3}$.
(a) Compute the gradient vector field $\nabla f(x, y)$.
(b) Find all critical points; i.e., points (a, b) such that $\nabla f(a, b)=\langle 0,0\rangle$.
(c) Compute the Hessian matrix $H f(x, y)$ and its determinant.
(d) Use the "second derivative test" to determine whether each of the critical points from part (b) is a local maximum, local minimum, or a saddle point.
(a): The gradient vector is

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 3 x^{2}+y, x-3 y^{2}\right\rangle
$$

(b): To find the critical points we must solve the following system of nonlinear equations:

$$
\left\{\begin{array}{l}
3 x^{2}+y=0, \\
x-3 y^{2}=0
\end{array}\right.
$$

Solving the second equation for x gives $x=3 y^{2}$ then substituting into the first equation gives

$$
\begin{array}{r}
3 x^{2}+y=0 \\
3\left(3 y^{2}\right)^{2}+y=0 \\
27 y^{4}+y=0 \\
y\left(27 y^{3}+1\right)=0 .
\end{array}
$$

This implies that $y=0$ or

$$
\begin{aligned}
27 y^{3}+1 & =0 \\
27 y^{3} & =-1 \\
y^{3} & =-1 / 27 \\
y & =-1 / 3 .
\end{aligned}
$$

(Recall that a negative real number has a unique real cube root.) When $y=0$ we must have $x=3 y^{2}=0$ and when $y=-1 / 3$ we must have $x=3 y^{2}=3(-1 / 3)^{2}=1 / 3$. Hence there are exactly two critical points: $(0,0)$ and $(1 / 3,-1 / 3)$.
(c): To compute the determinant of the Hessian matrix we must first compute all second derivatives of f :

$$
\begin{aligned}
f_{x x} & =6 x, \\
f_{y y} & =-6 y, \\
f_{x y} & =1, \\
f_{y x} & =1
\end{aligned}
$$

Thus the Hessian determinant is

$$
\operatorname{det}(H f)=\operatorname{det}\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
6 x & 1 \\
1 & -6 y
\end{array}\right)=-36 x y-1
$$

Since $\operatorname{det}(H f)(0,0)=-1<0$ we see that $(0,0)$ is a saddle point. Since $\operatorname{det}(H f)(1 / 3,-1 / 3)=$ $-36(-1 / 9)-1=3>0$ we see that $(1 / 3,-1 / 3)$ is a local maximum or minimum. Since $f_{x x}(1 / 3,-1 / 3)=6(1 / 3)=2>0$ we see that $(1 / 3,-1 / 3)$ is a local minimum ${ }^{1}$

Here is a picture:

[^0]
[^0]: ${ }^{1}$ We could also check that $f_{y y}(1 / 3,-1 / 3)=-6(-1 / 3)=2>0$.

