Problem 1. Lines and Circles. The parametrized curve in part (a) is a line. The parametrized curve in part (b) is a circle. In each case, compute the velocity vector $\mathbf{f}^{\prime}(t)=$ $\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ and speed $\left\|\mathbf{f}^{\prime}(t)\right\|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}$ at time $t$. Also eliminate $t$ to find an equation for the curve in terms of $x$ and $y$. [Hint: In part (b) look at $(x-a)^{2}+(y-b)^{2}$.]
(a) $\mathbf{f}(t)=(x(t), y(t))=(p+u t, q+v t)$ where $p, q, u, v$ are constants.
(b) $\mathbf{f}(t)=(x(t), y(t))=(a+r \cos (\omega t), b+r \sin (\omega t))$ where $a, b, r, \omega$ are constants.
[Oops: The solution uses the letters $a$ and $b$ instead of $p$ and $q$.]
(a) Line. The velocity and speed are

$$
(d x / d t, d y / d t)=(u, v) \quad \text { and } \quad \sqrt{(d x / d t)^{2}+(d y / d t)^{2}}=\sqrt{u^{2}+v^{2}} .
$$

Note that these are both constant, i.e., they do not depend on $t$. To eliminate $t$ we will assume that $u \neq 0$ and $v \neq 0$, so that $x=a+u t$ implies $t=(x-a) / u$ and $y=b+v t$ implies $t=(y-b) / v$. Then equation these expressions for $t$ gives

$$
\begin{aligned}
(x-a) / u & =(y-b) / v \\
v(x-a) & =u(y-b) \\
v(x-a)-u(y-b) & =0 .
\end{aligned}
$$

In class we will see that is the line that passes through the point $(a, b)$ and is parallel to the vector $\langle u, v\rangle$. Equivalently, this line is perpendicular to the vector $\langle v,-u\rangle$ :

(b) Circle. The velocity and speed are

$$
(d x / d t, d y / d t)=(-r \omega \sin (\omega t), r \omega \cos (\omega t))
$$

and

$$
\begin{aligned}
\sqrt{(d x / d t)^{2}+(d y / d t)^{2}} & =\sqrt{[-r \omega \sin (\omega t)]^{2}+[r \omega \cos (\omega t)]^{2}} \\
& =\sqrt{r^{2} \omega^{2}\left[\sin ^{2}(\omega t)+\cos ^{2}(\omega t)\right]} \\
& =\sqrt{r^{2} \omega^{2}} \\
& =r \omega .
\end{aligned}
$$

We assume that $r$ and $\omega$ are positive, so $\sqrt{r^{2} \omega^{2}}=|r \omega|=r \omega$. The speed is constant, but the velocity vector is not constant $\prod^{1}$ We can eliminate $t$ by using the trig identity $\sin ^{2}(\omega t)+$ $\cos ^{2}(\omega t)=1$ as follows:

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=[r \cos (\omega t)]^{2}+[r \sin (\omega t)]^{2} \\
& (x-a)^{2}+(y-b)^{2}=r^{2}\left[\cos ^{2}(\omega t)+\sin ^{2}(\omega t)\right] \\
& (x-a)^{2}+(y-b)^{2}=r^{2}
\end{aligned}
$$

This is the equation of a circle with radius $r$, centered at $(a, b)$. Here is a picture:


Problem 2. An Interesting Parametrized Curve. Consider the parametrized curve

$$
\mathbf{f}(t)=(x(t), y(t))=\left(t^{2}-1, t^{3}-t\right)
$$

(a) Compute the velocity vector $\mathbf{f}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ at time $t$.
(b) Find the slope of the tangent line at time $t$. [Hint: $d y / d x=(d y / d t) /(d x / d t)$.]
(c) Find all points on the curve where the tangent is horizontal or vertical.
(d) Sketch the curve. [Hint: Plot several points. Use a computer if you want.]
(e) Eliminate $t$ to find an equation relating $x$ and $y$. [Hint: This kind of problem is impossible in general, but in this case there is a very nice answer. Since $x=t^{2}-1$ we have $t= \pm \sqrt{x+1}$. Substitute this into $y$ and simplify as much as possible.]
(a): The velocity vector is

$$
\mathbf{f}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle=\left\langle 2 t-0,3 t^{2}-1\right\rangle=\left\langle 2 t, 3 t^{2}-1\right\rangle .
$$

[^0](b): The slope of the tangent line at time $t$ is
$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{3 t^{2}-1}{2 t} .
$$
(c): The tangent is horizontal when $d y / d x=0$, which implies that $3 t^{2}-1=0$, or $t= \pm 1 / \sqrt{3}$. The tangent is vertical when $d y / d x$ goes to $+\infty$ or $-\infty$. This happens when $t=0$.
(d): Here is a picture:


Remark: This curve has the property that it crosses itself because $\mathbf{f}(-1)=(0,0)=\mathbf{f}(+1)$. At this point there are two tangent lines corresponding to the two times -1 and +1 . The slopes of these two lines are $\left[3(-1)^{2}-1\right] /[2(-1)]=-1$ and $\left[3(+1)^{2}-1\right] /[2(+1)]=+1$.
(e): Since $x=t^{2}-1$ we have $t= \pm \sqrt{x+1}$. For simplicity let's take $t=\sqrt{x+1}$. Substituting this into $y=t^{3}-t$ gives

$$
\begin{aligned}
y & =(\sqrt{x+1})^{3}+\sqrt{x+1} \\
y & =\sqrt{x+1}\left((\sqrt{x+1})^{2}-1\right) \\
y & =\sqrt{x+1}(x+1-1) \\
y & =x \sqrt{x+1} \\
y^{2} & =x^{2}(x+1) \\
y^{2} & =x^{3}+x^{2} .
\end{aligned}
$$

Note that taking $t=-\sqrt{x+1}$ would yield the same expression. One can check that this defines the same shape by plotting the equation $y^{2}=x^{3}+x^{2}$ in Desmos.

Problem 3. Arc Length. Consider the parametrized curve $\mathbf{f}(t)=\left(t^{2}, t^{3}\right)$. Find the arc length of this curve between times $t=0$ and $t=1$. [Hint: The arc length is the integral of the speed: $\int_{0}^{1}\left\|\mathbf{f}^{\prime}(t)\right\| d t$. Arc length is generally impossible to compute by hand but in this case there is a lucky accident that allows the integral to be computed via substitution.]

Solutions: The velocity is $\mathbf{f}^{\prime}(t)=\left\langle 2 t, 3 t^{2}\right\rangle$ and the speed is

$$
\left\|\mathbf{f}^{\prime}(t)\right\|=\sqrt{(2 t)^{2}+\left(3 t^{2}\right)^{2}}=\sqrt{4 t^{2}+9 t^{4}}=\sqrt{t^{2}\left(4+9 t^{2}\right)},
$$

which we can write as $\left\|\mathbf{f}^{\prime}(t)\right\|=t \sqrt{4+9 t^{2}}$ when $t \geq 0$. It is a lucky coincidence that this function can be integrated by substitution:

$$
\begin{array}{rlr}
\operatorname{arc} \text { length } & =\int_{0}^{1}\left\|\mathbf{f}^{\prime}(t)\right\| d t \\
& =\int_{t=0}^{t=1} t \sqrt{4+9 t^{2}} d t & \\
& =\frac{1}{18} \int_{u=4}^{u=13} \sqrt{u} d u \\
& =\left.\frac{1}{18} \cdot \frac{u^{3 / 2}}{3 / 2}\right|_{u=4} ^{u=13} \\
& =\frac{1}{27}\left(13^{3 / 2}-4^{3 / 2}\right) \\
& \approx 1.44 .
\end{array}
$$

Does this make sense? Here is a picture of the path $\left(t^{2}, t^{3}\right)$, which travels from $(0,0)$ to $(1,1)$ as $t$ goes from 0 to 1 , and the straight line path between these points:


The blue straight line has length $\sqrt{2} \approx 1.41$, so the length of the red path must be slightly greater. So, yes, the answer 1.44 makes sense.

Problem 4. A Triangle in the Plane. Consider the following points in $\mathbb{R}^{2}$ :

$$
P=(-2,1), \quad Q=(1,-2), \quad R=(2,3)
$$

(a) Draw the three points $P, Q, R$, the midpoints $(P+Q) / 2,(P+R) / 2,(Q+R) / 2$ and the centroid $(P+Q+R) / 3$.
(b) Find the coordinates of the three side vectors $\mathbf{u}=\overrightarrow{P Q}, \mathbf{v}=\overrightarrow{P R}, \mathbf{w}=\overrightarrow{Q R}$. Check that $\mathbf{u}+\mathbf{w}=\mathbf{v}$. This is true because of the rule $\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}$.
(c) Use the length formula to compute the three side lengths $\|\mathbf{u}\|,\|\mathbf{v}\|,\|\mathbf{w}\|$.
(d) Use the dot product to compute the three angles of the triangle. After computing the angles, check that they sum to $180^{\circ}$. [Hint: Let $\alpha, \beta, \gamma$ be the angles at $P, Q, R$. The dot product theorem says that $\cos \alpha=\mathbf{u} \bullet \mathbf{v} /(\|\mathbf{u}\|\|\mathbf{v}\|)$. What about $\beta$ and $\gamma$ ?]
(a): First we compute:

$$
\begin{aligned}
(P+Q) / 2 & =[(-2,1)+(1,-2)] / 2=(-1,-1) / 2=(-1 / 2,-1 / 2) \\
(P+R) / 2 & =[(-2,1)+(2,3)] / 2=(0,4) / 2=(0,2) \\
(Q+R) / 2 & =[(1,-2)+(2,3)] / 2=(3,1) / 2=(3 / 2,1 / 2) \\
(P+Q+R) / 3 & =[(-2,1)+(1,-2)+(2,3)] / 3=(1,2) / 3=(1 / 3,2 / 3)
\end{aligned}
$$

And then we draw:

(b): In coordinates, the vectors $\mathbf{u}=\overrightarrow{P Q}, \mathbf{v}=\overrightarrow{P R}, \mathbf{w}=\overrightarrow{Q R}$ are

$$
\begin{aligned}
& \mathbf{u}=P-Q=(1,-2)-(-2,1)=\langle 3,-3\rangle, \\
& \mathbf{v}=R-P=(2,3)-(-2,1)=\langle 4,2\rangle \text {, } \\
& \mathbf{w}=R-Q=(2,3)-(1,-2)=\langle 1,5\rangle \text {. }
\end{aligned}
$$

Here is a picture:


From the alignment of the vectors, we see that $\mathbf{u}+\mathbf{w}=\mathbf{v}$, and the arithmetic checks out:

$$
\mathbf{u}+\mathbf{w}=\langle 3,-3\rangle+\langle 1,5\rangle=\langle 4,2\rangle=\mathbf{v}
$$

(c): According to the Pythagorean Theorem, the side lengths are

$$
\begin{aligned}
& \|\mathbf{u}\|=\sqrt{\mathbf{u} \bullet \mathbf{u}}=\sqrt{3^{2}+(-3)^{2}}=\sqrt{18} \approx 4.24 \\
& \|\mathbf{v}\|=\sqrt{\mathbf{v} \bullet \mathbf{v}}=\sqrt{4^{2}+2^{2}}=\sqrt{20} \approx 4.47 \\
& \|\mathbf{w}\|=\sqrt{\mathbf{w} \bullet \mathbf{w}}=\sqrt{1^{2}+5^{2}}=\sqrt{26} \approx 5.10
\end{aligned}
$$

(d): In order to compute the angles, we first compute the dot products:

$$
\begin{aligned}
\mathbf{u} \bullet \mathbf{v} & =(3)(4)+(-3)(2)=6 \\
\mathbf{u} \bullet \mathbf{w} & =(3)(1)+(-3)(5)=-12 \\
\mathbf{v} \bullet \mathbf{w} & =(4)(1)+(2)(5)=14
\end{aligned}
$$

Since $\alpha$ is the angle between $\mathbf{u}$ and $\mathbf{v}$ (placed tail-to-tail), the dot product theorem says

$$
\cos \alpha=\frac{\mathbf{u} \bullet \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{\mathbf{u} \bullet \mathbf{v}}{\sqrt{\mathbf{u} \bullet \mathbf{u}} \sqrt{\mathbf{v} \bullet \mathbf{v}}}=\frac{6}{\sqrt{18} \sqrt{20}}
$$

Similarly, since $\beta$ is the angle between $-\mathbf{u}$ and $\mathbf{w}$ (placed tail-to-tail), we have

$$
\cos \beta=\frac{(-\mathbf{u}) \bullet \mathbf{w}}{\|-\mathbf{u}\|\|\mathbf{w}\|}=\frac{-\mathbf{u} \bullet \mathbf{w}}{\sqrt{\mathbf{u} \bullet \mathbf{u}} \sqrt{\mathbf{w} \bullet \mathbf{w}}}=\frac{12}{\sqrt{18} \sqrt{26}}
$$

and since $\gamma$ is the angle between $-\mathbf{v}$ and $-\mathbf{w}$ (placed tail-to-tail) we have

$$
\cos \gamma=\frac{(-\mathbf{v}) \bullet(-\mathbf{w})}{\|-\mathbf{v}\|\|-\mathbf{w}\|}=\frac{\mathbf{v} \bullet \mathbf{w}}{\sqrt{\mathbf{v} \bullet \mathbf{v}} \sqrt{\mathbf{w} \bullet \mathbf{w}}}=\frac{14}{\sqrt{20} \sqrt{26}}
$$

My computer says that $\alpha=71.6^{\circ}, \beta=56.3^{\circ}$ and $\gamma=52.1^{\circ}$, which, indeed, add up to $180^{\circ}$.

Problem 5. Some Properties of Vector Arithmetic. Consider three vectors in $\mathbb{R}^{3}$ :

$$
\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle, \quad \mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle, \quad \mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .
$$

(a) For any real number $a \in \mathbb{R}$ check that $(a \mathbf{u}) \bullet \mathbf{v}=\mathbf{u} \bullet(a \mathbf{v})=a(\mathbf{u} \bullet \mathbf{v})$.
(b) Check the distributive property: $(\mathbf{u}+a \mathbf{v}) \bullet \mathbf{w}=\mathbf{u} \bullet \mathbf{w}+a(\mathbf{v} \bullet \mathbf{w})$.
(c) Substitute $\mathbf{w}=\mathbf{u}+a \mathbf{v}$ in part (b) to show that

$$
(\mathbf{u}+a \mathbf{v}) \bullet(\mathbf{u}+a \mathbf{v})=\mathbf{u} \bullet \mathbf{u}+a^{2}(\mathbf{v} \bullet \mathbf{v})+2 a(\mathbf{u} \bullet \mathbf{v})
$$

(d) Substitute $a=-1$ in part (c) to show that

$$
\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2(\mathbf{u} \bullet \mathbf{v}) .
$$

[Hint: Recall that $\|\mathbf{x}\|^{2}=\mathbf{x} \bullet \mathbf{x}$ for any vector $\mathbf{x}$.]
(a): We explicit compute each of the three expressions:

$$
\begin{aligned}
& (a \mathbf{u}) \bullet \mathbf{v}=\left\langle a u_{1}, a u_{2}, a u_{3}\right\rangle \bullet\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left(a u_{1}\right) v_{1}+\left(a u_{2}\right) v_{2}+\left(a u_{3}\right) v_{3}, \\
& \mathbf{u} \bullet(a \mathbf{v})=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \bullet\left\langle a v_{1}, a v_{2}, a v_{3}\right\rangle=u_{1}\left(a v_{1}\right)+u_{2}\left(a v_{2}\right)+u_{3}\left(a v_{3}\right), \\
& a(\mathbf{u} \bullet \mathbf{v})=a\left(\left\langle u_{1}, u_{2}, u_{3}\right\rangle \bullet\left\langle v_{1}, v_{2}, v_{3}\right\rangle\right)=a\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) .
\end{aligned}
$$

Note that each of these is equal to $a u_{1} v_{1}+a u_{2} v_{2}+a u_{3} v_{3}$, so they are all the same.
(b): Expanding the left hand side gives

$$
\begin{aligned}
(\mathbf{u}+a \mathbf{v}) \bullet \mathbf{w} & =\left(\left\langle u_{1}, u_{2}, u_{3}\right\rangle+a\left\langle v_{1}, v_{2}, v_{3}\right\rangle\right) \bullet\left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
& =\left\langle u_{1}+a v_{1}, u_{2}+a v_{2}, u_{3}+a v_{3}\right\rangle \bullet\left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
& =\left(u_{1}+a v_{1}\right) w_{1}+\left(u_{2}+a v_{2}\right) w_{2}+\left(u_{3}+a v_{3}\right) w_{3} \\
& =u_{1} w_{1}+a v_{1} w_{1}+u_{2} w_{2}+a v_{2} w_{2}+u_{3} w_{3}+a v_{3} w_{3},
\end{aligned}
$$

and expanding the right hand side gives

$$
\begin{aligned}
\mathbf{u} \bullet \mathbf{w}+a(\mathbf{v} \bullet \mathbf{w}) & =\left\langle u_{1}, u_{2}, u_{3}\right\rangle \bullet\left\langle w_{1}, w_{2}, w_{3}\right\rangle+a\left(\left\langle v_{1}, v_{2}, v_{3}\right\rangle \bullet\left\langle w_{1}, w_{2}, w_{3}\right\rangle\right) \\
& =\left(u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}\right)+a\left(v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}\right) \\
& =u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}+a v_{1} w_{1}+a v_{2} w_{2}+a v_{3} w_{3},
\end{aligned}
$$

which is the same thing.
(c): This time I won't write out all of the details. Instead, I will use a more abstract method by applying the result from part (b) $:^{2}$

$$
\begin{aligned}
(\mathbf{u}+a \mathbf{v}) \bullet(\mathbf{u}+a \mathbf{v}) & =\mathbf{u} \bullet(\mathbf{u}+a \mathbf{v})+a(\mathbf{v} \bullet(\mathbf{u}+a \mathbf{v})) & & \text { from (b) } \\
& =\mathbf{u} \bullet \mathbf{u}+a(\mathbf{u} \bullet \mathbf{v})+a(\mathbf{v} \bullet \mathbf{u}+a \mathbf{v} \bullet \mathbf{v}) & & \text { from (b) } \\
& =\mathbf{u} \bullet \mathbf{u}+a(\mathbf{u} \bullet \mathbf{v})+a(\mathbf{v} \bullet \mathbf{u})+a^{2}(\mathbf{v} \bullet \mathbf{v}) & & \\
& =\mathbf{u} \bullet \mathbf{v}+2 a(\mathbf{u} \bullet \mathbf{v})+a^{2}(\mathbf{v} \bullet \mathbf{v}) . & &
\end{aligned}
$$

(d): Substitute $a=-1$ into part (c) to get

$$
(\mathbf{u}-\mathbf{v}) \bullet(\mathbf{u}-\mathbf{v})=\mathbf{u} \bullet \mathbf{v}-2(\mathbf{u} \bullet \mathbf{v})+(-1)^{2}(\mathbf{v} \bullet \mathbf{v})=\mathbf{u} \bullet \mathbf{u}+\mathbf{v} \bullet \mathbf{v}-2(\mathbf{u} \bullet \mathbf{v}) .
$$

[^1]Then use the formula $\mathbf{x} \bullet \mathbf{x}=\|\mathbf{x}\|^{2}$ to get

$$
\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2(\mathbf{u} \bullet \mathbf{v})
$$

Remark: This algebraic formula is the key to the proof of the Dot Product Theorem. Consider any two vectors $\mathbf{u}$ and $\mathbf{v}$, placed tail-to-tail, with angle $\theta$ between them, and consider the vector $\mathbf{u}-\mathbf{v}$, which forms the third side of the triangle:


The geometric Law of Cosines says that the three side lengths $\|\mathbf{u}\|,\|\mathbf{v}\|$ and $\|\mathbf{u}-\mathbf{v}\|$ and the angle $\theta$ are related as follows $3^{3}$

$$
\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \cos \theta
$$

On the other hand, we just proved that

$$
\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2(\mathbf{u} \bullet \mathbf{v}) .
$$

Since both of these formulas are true, we must have
$\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$.

[^2]
[^0]:    ${ }^{1}$ There is different vector, called the angular velocity, that is constant. It points out of the page into the third dimension and it has length $r \omega$.

[^1]:    ${ }^{2}$ We also need a few more basic rules: $\mathbf{u} \bullet \mathbf{v}=\mathbf{v} \bullet \mathbf{u}, a(b \mathbf{u})=(a b) \mathbf{u}$ and $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$. But these are easy to check so I won't bother.

[^2]:    ${ }^{3}$ Note that the Law of Cosines becomes the Pythagorean Theorem when we set $\theta=90^{\circ}$ becuase $\cos 90^{\circ}=0$.

