
Math 310 Spring 2024
Homework 1 Drew Armstrong

Problem 1. Lines and Circles. The parametrized curve in part (a) is a line. The
parametrized curve in part (b) is a circle. In each case, compute the velocity vector f ′(t) =

〈x′(t), y′(t)〉 and speed ‖f ′(t)‖ =
√
x′(t)2 + y′(t)2 at time t. Also eliminate t to find an equation

for the curve in terms of x and y. [Hint: In part (b) look at (x− a)2 + (y − b)2.]
(a) f(t) = (x(t), y(t)) = (p+ ut, q + vt) where p, q, u, v are constants.
(b) f(t) = (x(t), y(t)) = (a+ r cos(ωt), b+ r sin(ωt)) where a, b, r, ω are constants.

[Oops: The solution uses the letters a and b instead of p and q.]

(a) Line. The velocity and speed are

(dx/dt, dy/dt) = (u, v) and
√

(dx/dt)2 + (dy/dt)2 =
√
u2 + v2.

Note that these are both constant, i.e., they do not depend on t. To eliminate t we will
assume that u 6= 0 and v 6= 0, so that x = a+ ut implies t = (x− a)/u and y = b+ vt implies
t = (y − b)/v. Then equation these expressions for t gives

(x− a)/u = (y − b)/v
v(x− a) = u(y − b)

v(x− a)− u(y − b) = 0.

In class we will see that is the line that passes through the point (a, b) and is parallel to the
vector 〈u, v〉. Equivalently, this line is perpendicular to the vector 〈v,−u〉:

(b) Circle. The velocity and speed are

(dx/dt, dy/dt) = (−rω sin(ωt), rω cos(ωt))

and √
(dx/dt)2 + (dy/dt)2 =

√
[−rω sin(ωt)]2 + [rω cos(ωt)]2

=

√
r2ω2[sin2(ωt) + cos2(ωt)]

=
√
r2ω2

= rω.
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We assume that r and ω are positive, so
√
r2ω2 = |rω| = rω. The speed is constant, but

the velocity vector is not constant.1 We can eliminate t by using the trig identity sin2(ωt) +
cos2(ωt) = 1 as follows:

(x− a)2 + (y − b)2 = [r cos(ωt)]2 + [r sin(ωt)]2

(x− a)2 + (y − b)2 = r2[cos2(ωt) + sin2(ωt)]

(x− a)2 + (y − b)2 = r2.

This is the equation of a circle with radius r, centered at (a, b). Here is a picture:

Problem 2. An Interesting Parametrized Curve. Consider the parametrized curve

f(t) = (x(t), y(t)) = (t2 − 1, t3 − t).

(a) Compute the velocity vector f ′(t) = 〈x′(t), y′(t)〉 at time t.
(b) Find the slope of the tangent line at time t. [Hint: dy/dx = (dy/dt)/(dx/dt).]
(c) Find all points on the curve where the tangent is horizontal or vertical.
(d) Sketch the curve. [Hint: Plot several points. Use a computer if you want.]
(e) Eliminate t to find an equation relating x and y. [Hint: This kind of problem is

impossible in general, but in this case there is a very nice answer. Since x = t2 − 1 we
have t = ±

√
x+ 1. Substitute this into y and simplify as much as possible.]

(a): The velocity vector is

f ′(t) = 〈x′(t), y′(t)〉 = 〈2t− 0, 3t2 − 1〉 = 〈2t, 3t2 − 1〉.

1There is different vector, called the angular velocity, that is constant. It points out of the page into the
third dimension and it has length rω.
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(b): The slope of the tangent line at time t is

dy

dx
=
dy/dt

dx/dt
=
y′(t)

x′(t)
=

3t2 − 1

2t
.

(c): The tangent is horizontal when dy/dx = 0, which implies that 3t2−1 = 0, or t = ±1/
√

3.
The tangent is vertical when dy/dx goes to +∞ or −∞. This happens when t = 0.

(d): Here is a picture:

 

Remark: This curve has the property that it crosses itself because f(−1) = (0, 0) = f(+1). At
this point there are two tangent lines corresponding to the two times −1 and +1. The slopes
of these two lines are [3(−1)2 − 1]/[2(−1)] = −1 and [3(+1)2 − 1]/[2(+1)] = +1.

(e): Since x = t2− 1 we have t = ±
√
x+ 1. For simplicity let’s take t =

√
x+ 1. Substituting

this into y = t3 − t gives

y = (
√
x+ 1)3 +

√
x+ 1

y =
√
x+ 1

(
(
√
x+ 1)2 − 1

)
y =
√
x+ 1(x+ 1− 1)

y = x
√
x+ 1

y2 = x2(x+ 1)

y2 = x3 + x2.
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Note that taking t = −
√
x+ 1 would yield the same expression. One can check that this

defines the same shape by plotting the equation y2 = x3 + x2 in Desmos.

Problem 3. Arc Length. Consider the parametrized curve f(t) = (t2, t3). Find the arc
length of this curve between times t = 0 and t = 1. [Hint: The arc length is the integral of

the speed:
∫ 1
0 ‖f

′(t)‖ dt. Arc length is generally impossible to compute by hand but in this
case there is a lucky accident that allows the integral to be computed via substitution.]

Solutions: The velocity is f ′(t) = 〈2t, 3t2〉 and the speed is

‖f ′(t)‖ =
√

(2t)2 + (3t2)2 =
√

4t2 + 9t4 =
√
t2(4 + 9t2),

which we can write as ‖f ′(t)‖ = t
√

4 + 9t2 when t ≥ 0. It is a lucky coincidence that this
function can be integrated by substitution:

arc length =

∫ 1

0
‖f ′(t)‖ dt

=

∫ t=1

t=0
t
√

4 + 9t2 dt

=
1

18

∫ u=13

u=4

√
u du (u = 4 + 9t2, du = 18t dt)

=
1

18
· u

3/2

3/2

∣∣∣∣∣
u=13

u=4

=
1

27

(
133/2 − 43/2

)
≈ 1.44.

Does this make sense? Here is a picture of the path (t2, t3), which travels from (0, 0) to (1, 1)
as t goes from 0 to 1, and the straight line path between these points:

The blue straight line has length
√

2 ≈ 1.41, so the length of the red path must be slightly
greater. So, yes, the answer 1.44 makes sense.
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Problem 4. A Triangle in the Plane. Consider the following points in R2:

P = (−2, 1), Q = (1,−2), R = (2, 3).

(a) Draw the three points P,Q,R, the midpoints (P + Q)/2, (P + R)/2, (Q + R)/2 and
the centroid (P +Q+R)/3.

(b) Find the coordinates of the three side vectors u = ~PQ,v = ~PR,w = ~QR. Check that

u + w = v. This is true because of the rule ~PQ+ ~QR = ~PR.
(c) Use the length formula to compute the three side lengths ‖u‖, ‖v‖, ‖w‖.
(d) Use the dot product to compute the three angles of the triangle. After computing the

angles, check that they sum to 180◦. [Hint: Let α, β, γ be the angles at P,Q,R. The
dot product theorem says that cosα = u • v/(‖u‖‖v‖). What about β and γ?]

(a): First we compute:

(P +Q)/2 = [(−2, 1) + (1,−2)]/2 = (−1,−1)/2 = (−1/2,−1/2),

(P +R)/2 = [(−2, 1) + (2, 3)]/2 = (0, 4)/2 = (0, 2),

(Q+R)/2 = [(1,−2) + (2, 3)]/2 = (3, 1)/2 = (3/2, 1/2),

(P +Q+R)/3 = [(−2, 1) + (1,−2) + (2, 3)]/3 = (1, 2)/3 = (1/3, 2/3).

And then we draw:

(b): In coordinates, the vectors u = ~PQ,v = ~PR,w = ~QR are

u = P −Q = (1,−2)− (−2, 1) = 〈3,−3〉,
v = R− P = (2, 3)− (−2, 1) = 〈4, 2〉,
w = R−Q = (2, 3)− (1,−2) = 〈1, 5〉.

Here is a picture:
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From the alignment of the vectors, we see that u + w = v, and the arithmetic checks out:

u + w = 〈3,−3〉+ 〈1, 5〉 = 〈4, 2〉 = v.

(c): According to the Pythagorean Theorem, the side lengths are

‖u‖ =
√
u • u =

√
32 + (−3)2 =

√
18 ≈ 4.24,

‖v‖ =
√
v • v =

√
42 + 22 =

√
20 ≈ 4.47,

‖w‖ =
√
w •w =

√
12 + 52 =

√
26 ≈ 5.10.

(d): In order to compute the angles, we first compute the dot products:

u • v = (3)(4) + (−3)(2) = 6,

u •w = (3)(1) + (−3)(5) = −12,

v •w = (4)(1) + (2)(5) = 14.

Since α is the angle between u and v (placed tail-to-tail), the dot product theorem says

cosα =
u • v
‖u‖‖v‖

=
u • v√

u • u
√
v • v

=
6√

18
√

20
.

Similarly, since β is the angle between −u and w (placed tail-to-tail), we have

cosβ =
(−u) •w
‖ − u‖‖w‖

=
−u •w√

u • u
√
w •w

=
12√

18
√

26
,

and since γ is the angle between −v and −w (placed tail-to-tail) we have

cos γ =
(−v) • (−w)

‖ − v‖‖ −w‖
=

v •w√
v • v

√
w •w

=
14√

20
√

26
.

My computer says that α = 71.6◦, β = 56.3◦ and γ = 52.1◦, which, indeed, add up to 180◦.
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Problem 5. Some Properties of Vector Arithmetic. Consider three vectors in R3:

u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉, w = 〈w1, w2, w3〉.

(a) For any real number a ∈ R check that (au) • v = u • (av) = a(u • v).
(b) Check the distributive property: (u + av) •w = u •w + a(v •w).
(c) Substitute w = u + av in part (b) to show that

(u + av) • (u + av) = u • u + a2(v • v) + 2a(u • v)

(d) Substitute a = −1 in part (c) to show that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2(u • v).

[Hint: Recall that ‖x‖2 = x • x for any vector x.]

(a): We explicit compute each of the three expressions:

(au) • v = 〈au1, au2, au3〉 • 〈v1, v2, v3〉 = (au1)v1 + (au2)v2 + (au3)v3,

u • (av) = 〈u1, u2, u3〉 • 〈av1, av2, av3〉 = u1(av1) + u2(av2) + u3(av3),

a(u • v) = a(〈u1, u2, u3〉 • 〈v1, v2, v3〉) = a(u1v1 + u2v2 + u3v3).

Note that each of these is equal to au1v1 + au2v2 + au3v3, so they are all the same.

(b): Expanding the left hand side gives

(u + av) •w = (〈u1, u2, u3〉+ a〈v1, v2, v3〉) • 〈w1, w2, w3〉
= 〈u1 + av1, u2 + av2, u3 + av3〉 • 〈w1, w2, w3〉
= (u1 + av1)w1 + (u2 + av2)w2 + (u3 + av3)w3

= u1w1 + av1w1 + u2w2 + av2w2 + u3w3 + av3w3,

and expanding the right hand side gives

u •w + a(v •w) = 〈u1, u2, u3〉 • 〈w1, w2, w3〉+ a(〈v1, v2, v3〉 • 〈w1, w2, w3〉)
= (u1w1 + u2w2 + u3w3) + a(v1w1 + v2w2 + v3w3)

= u1w1 + u2w2 + u3w3 + av1w1 + av2w2 + av3w3,

which is the same thing.

(c): This time I won’t write out all of the details. Instead, I will use a more abstract method
by applying the result from part (b):2

(u + av) • (u + av) = u • (u + av) + a(v • (u + av)) from (b)

= u • u + a(u • v) + a(v • u + av • v) from (b)

= u • u + a(u • v) + a(v • u) + a2(v • v)

= u • v + 2a(u • v) + a2(v • v).

(d): Substitute a = −1 into part (c) to get

(u− v) • (u− v) = u • v − 2(u • v) + (−1)2(v • v) = u • u + v • v − 2(u • v).

2We also need a few more basic rules: u • v = v • u, a(bu) = (ab)u and (a+ b)u = au + bu. But these are
easy to check so I won’t bother.
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Then use the formula x • x = ‖x‖2 to get

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2(u • v).

Remark: This algebraic formula is the key to the proof of the Dot Product Theorem. Consider
any two vectors u and v, placed tail-to-tail, with angle θ between them, and consider the vector
u− v, which forms the third side of the triangle:

The geometric Law of Cosines says that the three side lengths ‖u‖, ‖v‖ and ‖u− v‖ and the
angle θ are related as follows:3

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2 cos θ.

On the other hand, we just proved that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2(u • v).

Since both of these formulas are true, we must have

u • v = ‖u‖‖v‖ cos θ.

3Note that the Law of Cosines becomes the Pythagorean Theorem when we set θ = 90◦ becuase cos 90◦ = 0.


