Math 310
Fall 2023

Exam 2
Fri Dec 1

No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each
page is worth 6 points, for a total of 30 points.

1. Integrating a Scalar Over a Rectangle.

(a) Integrate f(z,y) = x 4+ y over the rectangle with —1 <z <2and 1 <y < 3.
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Remark: We could view this as the volume of the region above the rectangle in the
x,y-plane with —1 < x <2 and 1 <y < 3 and below the surface z = = + y.

(b) Compute the volume of the 3D region above the square in the z,y-plane with
0<z<1land 0 <y <1, and below the surface z = ny.

We can view 22y dxdy as the volume

of a skinny column above the point (z,y,0),

where 2y is the height of the column and dxdy are the area of the base. Hence

Volume = / / (skinny columns)

= // 22y dady
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Alternatively, some students parametrized the 3D region by 0 <2 <1,0<y <1

and 0 < z < 22y and then computed

Volume = / / / 1dxdydz
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= same as before.

Here is a picture of the 3D region:
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2. Polar and Cylindrical Coordinates.

a) Use polar coordinates to integrate f(x,y) = x° + y~ over the unit disk z° 4y~ < 1.
Use pol di i Zpy? he unit disk 22 +¢? < 1

Let © = rcosf and y = rsiné so that 22 + 32 = r? and dxdy = rdrdf. The unit
disk is parametrized by 0 < r <1 and 0 < 0 < 27, so that

// (x2+y2)dxdy:// r? . rdrdf
disk disk
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=7/2.

(b) Use cylindrical coordinates to integrate f(z,y,z) = 22 4+ y? + 22 over the cylinder
satisfying 22 + 92 < 1land 0 < z < 1.

Let 2 = rcosf and y = rsinf so that r? = 22 + 42 and daxdydz = r drdfdz. The
cylinder is parametrized by 0 <r < 1,0 <0 <27 and 0 < z < 1, so that

/// (2% +9? + 2%) dzdydz

cylinder

J— 2 2 .

= (r*+2%) - rdrdfdz
cylinder

= /// (r3 + r2?) drdfdz
cylinder



3. Surface Area. Consider the following parametrized surface in 3D:

r(u,v) = (u,v,u* +uv) with0<u<land0<v<I1.
(a) Compute the tangent vectors r,, and r,, and the normal vector r, X r,.

We have r,, = (1,0,2u + v), r, = (0,1, u), and

ry X ry = (—2u—wv,—u,l).

(b) Use your answer from part (a) to set up an integral to compute the area of the
surface and simplify as much as possible. [This integral is too difficult to evaluate.]

Hence the surface area is
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// 1f|ry X vy dudv = / / V(=2u — v)2 + (—u)? + 12 dudv
o Jo

1,1
:/ / V5u2 + duv + 02 + 1 dudv.
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This cannot be evaluated by hand. My computer gives 1.91994. Here is a picture:

4. Green’s Theorem. Consider the vector field F(z,y) = (P(z,y), Q(z,y)) = (—y3/3,23/3).



(a) Integrate the scalar curl(F) = Q, — P, over the unit disk 2 + y? < 1.

Since Q, — Py = 32 /3 — (—3y?/3) = 2? + y?, this problem is the same as Problem
2(a). The answer is /2.

(b) Set up the line integral of the vector field F around the circle r(t) = (cost,sint) for
0 <t <27, and simplify as much as possible. [This integral is difficult to evaluate
directly, but Green’s Theorem tells us that (a) and (b) have the same answer.]

The definition of the line integral gives

2w r
/F eTds= /0 F(r(t)) e ||1"$;|| ' (t)]| dt

27
:/0 F(r(t)) er'(t)dt

27
= / F(cost,sint) e (—sint,cost) dt
0
27
= / (—sin®t/3,cos> t/3) @ (—sint, cost) dt
0

_/27r sin4t+cos4t gt
) 3 3 '

I guess this could be evaluated by hand, but it would take a while. The answer is
7/2. Here is a picture of the disk and the vector field F = (—y3/3, 23/3):
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5. Conservative Vector Fields. Consider the vector field F(z,y) = (P, Q) = (xy?, 2%y).
Note that this field is conservative because (), = 2xy = P,.

(a) Find a scalar function f(z,y) such that Vf(z,y) = F(z,y). [Hint: Compute the
line integral of F along any parametrized path ending at the point (x,y).]



Let f(z,y) be the line integral of F along the path (zt,yt) for 0 < ¢ < 1:

1
flas) = [ Flatogt) o (ot i
1
:/o ((xt)(yt)?, (xt)?(yt)) o (xt,yt)’ dt
= / 1<xy2t3,x2yt3> o (z,y)dt
0

1
_ / (x2y2t3 4 x2y2t3) dt
0
1
= 2z2y? - / 3 dt
0
=227y - (1/4)
= 2%y?/2.
Then we check that Vf = V(2%y?/2) = (232, 2%y) = F as desired.
(b) Use your answer from part (a) and the Fundamental Theorem of Line Integrals to

compute the line integral of F along the path r(t) = (1 +t,/t) for 1 <t < 2.

Consider the path r(t) = (1 +¢,+/t). (This is different from the path in part (a).)
Since F = V f, the Fundamental Theorem of Line Integrals tells us that

2
/meoﬁﬂﬁ=/Vﬁmm (
1
— Fr@) - 7))
:f(3’ 2)_f(271)
— (32(v2)*/2 — (2)(1)/2
=9-—-2
=17.

(We could also compute this without using the Fundamental Theorem, but it would
take longer.) Here is a picture of the vector field F = (zy?, 2%y) and the path r:
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Math 211 Summer 2022
Quiz 4 Drew Armstrong

Problem 1. Double Integrals. Use polar coordinates to integrate the scalar function
f(z,y) =1 — 22 — y? over the unit disk 22 +y? < 1.

Polar coordinates are defined by x = r cos 6 and y = rsin 0, with dedy = rdrdf. This is a good
choice because the function f and the domain of integration both have rotational symmetry.
To be specific, we have f =1 — 22 —y? = 1 — 2, and the domain is parametrized by 0 < r < 1
and 0 < 6 < 27. Hence the integral is

//disk /= //disk(l = v Jrdrds
:/O%de-/ol(r—'r“g’)dr
1 1!

1 4
=27 - |:§T_ZT:|O

Remark: If we want, we could interpret this as the volume between the z-axis and the parabolic

dome z =1 — 2% — 3%




Problem 2. Triple Integrals.
(a) Find a parametrization for the tetrahedron in R? with vertices

(0,0,0), (1,0,0), (0,1,0), and (0,0,1).

(b) Use your parametrization to compute the volume of the tetrahedron.

(a): If we choose x, then y, then z, we obtain the following parametrization:

0 < z < 1,
0 < 2 < 1—2—y.
Here is a picture:
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(b): The volume is

1 11—z l-z—y
/// 1dzdydz :/ </ (/ dz> dy> dx
tetrahedron 0 0 0



Math 211 Summer 2022
Quiz 5 Drew Armstrong

Problem 1. Surface Area. Compute the area of the parametrized surface
r(u,v) = (x(u,v), y(u,v), 2(u,v)) = (u, u, v?)
for0<u<landO0<ov<1.

First we compute the stretch factor:
r, = (1,1,0),
r, = (0,0, 2v),
ry, X ry, = (20, —2v,0),
Ity X 1| = V402 + 402
8v?
= 2v/2v because v > 0.

//1dA://||ru><rv||dudv
://2\/§vdudv
=2V2. / du - / vdv

=2v2(1)(1/2)
— V2.

Then we compute the area:

Remark: It’s really hard to find a surface whose area is computable by hand. This surface is
secretly just a rectangle with base v/2 and height 1:




Problem 2. Line Integrals. Integrate the vector ﬁeldﬂ F(z,y) = (—y,x) around the unit
circle r(t) = (cost,sint) for 0 <t < 2.

From the definition we have
/ FeT= /F(r(t)) or/(t)dt
circle

= / F(cost,sint) e (—sint, cost) dt

= /(— sint,cost) @ (—sint,cost) dt

= / [sin®¢ + cos® t] dt

2m
-~ [ 1a
0
= 2.

Remark: Since this integral is not zero, we conclude that the vector field F' is not conservative.

Problem 3. Conservative Vector Fields. Find a scalar field f(x,y) such that
Vi(z,y) = 2z + 2y, 2z + 2y).

We will use the Fundamental Theorem of Line Integrals (or whatever you want to call it).
Consider the path r(t) = (zt, yt) for ¢ from 0 to 27. Then we have

f(x,y) = £(0,0) = f(r(1)) = f(x(0))
= /0 Vf(r(t))er'(t)dt

= / (2xt + 2yt, 2zt + 2yt) o (x,y) dt
0

1
= / (22t + 2yt)x + (22t + 2yt)y] dt
0
1
= / (222 4 4xy + 2y°)t dt
0

= (222 + day + 2%) - /Oltdt
= (227 + 4wy + 2y%) - (1/2)
= 2% + 22y + 1.
We conclude that f(z,y) = 22 + 2xy + 32, plus an arbitrary constant. Check:
(2% 4 22y + y*)e = 20+ 2y + 0,
(2 + 22y + y*)y = 0+ 22 + 2y.

IThat is, integrate the component of F' that is tangent to the curve. You know, the usual thing.
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