No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Consider the line L in \mathbb{R}^{3} that passes through the points

$$
(1,-3,2) \text { and }(4,2,3) .
$$

(a) Write down a parametrization for the line L.

We need one point on the line and a vector in the line. We will choose the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,-3,2)$ and the vector $\langle u, v, w\rangle=(4,2,3)-(1,-3,2)=\langle 3,5,1\rangle$, to obtain the parametrization

$$
\begin{aligned}
\mathbf{r}(t) & =(1,-3,2)+t\langle 3,5,1\rangle \\
& =(1+3 t,-3+5 t, 2+t) .
\end{aligned}
$$

(b) Write down the equations of two planes whose intersection is L.

From part (a) we have

$$
\left\{\begin{array} { l }
{ x = 1 + 3 t , } \\
{ y = - 3 + 5 t , } \\
{ z = 2 + t , }
\end{array} \rightsquigarrow \left\{\begin{array}{l}
t=(x-1) / 3, \\
t=(y+3) / 5, \\
t=z-2 .
\end{array}\right.\right.
$$

Eliminating t gives three equations:

$$
(x-1) / 3=(y+3) / 5, \quad(x-1) / 3=z-2, \quad(y+3) / 5=z-2 .
$$

Each of these is the equation of a plane that contains the line L. Pick two.
Remark: Both parts of Problem 1 have infinitely many correct solutions.
Problem 2. Let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the trajectory of a particle in the x, y-plane. Suppose that the acceleration at time t is $\mathbf{r}^{\prime \prime}(t)=\langle 6 t, 2\rangle$.
(a) Find the position $\mathbf{r}(t)$ at time t if the initial position is $\mathbf{r}(0)=(0,0)$ and the initial velocity is $\mathbf{r}^{\prime}(0)=\langle 1,1\rangle$.

Integrating once gives

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\int \mathbf{r}^{\prime \prime}(t) d t \\
& =\left\langle\int 6 t d t, \int 2 d t\right\rangle \\
& =\left\langle 3 t^{2}+c_{1}, 2 t+c_{2}\right\rangle .
\end{aligned}
$$

Substituting $t=0$ gives $\mathbf{r}^{\prime}(0)=\left\langle c_{1}, c_{2}\right\rangle$, so the given initial velocity implies that $c_{1}=c_{2}=1$, and hence

$$
\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}+1,2 t+1\right\rangle .
$$

Integrating again gives

$$
\begin{aligned}
\mathbf{r}(t) & =\int \mathbf{r}^{\prime}(t) d t \\
& =\left\langle\int\left(3 t^{2}+1\right) d t, \int(2 t+1) d t\right\rangle \\
& =\left\langle t^{2}+t+c_{3}, t^{2}+t+c_{4}\right\rangle .
\end{aligned}
$$

Substituting $t=0$ gives $\mathbf{r}(0)=\left\langle c_{3}, c_{4}\right\rangle$, so the given initial position implies that $c_{3}=c_{4}=0$. We conclude that

$$
\mathbf{r}(t)=\left(t^{3}+t, t^{2}+t\right)
$$

(b) Compute the slope of the tangent line at the point $\mathbf{r}(t)$. Use this to find all points on the curve where the tangent line is horizontal.

The slope of the tangent line is

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+1}{3 t^{2}+1} .
$$

The tangent line is horizontal when $d y / d x=0$, which implies that $2 t+1=0$ and hence $t=-1 / 2$. The corresponding point is

$$
\mathbf{r}(-1 / 2)=\left\langle\left(\frac{-1}{2}\right)^{3}-\frac{1}{2},\left(\frac{-1}{2}\right)^{2}-\frac{1}{2}\right\rangle=\left\langle-\frac{5}{8},-\frac{1}{4}\right\rangle .
$$

Here is a picture:

Problem 3. Consider a parallelogram that has side lengths a and b with an angle of θ between them. The area of the parallelogram is $A=a b \sin \theta$.
(a) Use the chain rule to write an approximate formula for the uncertainty ΔA in terms of the uncertainties $\Delta a, \Delta b$ and $\Delta \theta$.

The chain rule says that

$$
\begin{aligned}
\Delta A & \approx \frac{\partial A}{\partial a} \Delta a+\frac{\partial A}{\partial b} \Delta b+\frac{\partial A}{\partial \theta} \Delta \theta \\
& =b \sin \theta \Delta a+a \sin \theta \Delta b+a b \cos \theta \Delta \theta
\end{aligned}
$$

(b) Suppose that you measure the quantities $a=10 \mathrm{~cm}, b=15 \mathrm{~cm}$ and $\theta=\pi / 6$ radians. If your measuring equipment has uncertainties $\Delta a=\Delta b=0.1 \mathrm{~cm}$ and $\Delta \theta=\pi / 180$ radians, use your formula from part (a) to estimate the uncertainty ΔA. You can leave your answer in unsimplified form.

Substituting $a=10, b=15, \theta=\pi / 6, \Delta a=\Delta b=0.1$ and $\Delta \theta=\pi / 180$ gives

$$
\begin{aligned}
\Delta A & \approx b \sin \theta \Delta a+a \sin \theta \Delta b+a b \cos \theta \Delta \theta \\
& =(15) \sin (\pi / 6)(0.1)+(10) \sin (\pi / 6)(0.1)+(10)(15) \cos (\pi / 6)(\pi / 180) \\
& =(15)(1 / 2)(0.1)+(10)(1 / 2)(0.1)+(10)(15)(\sqrt{3} / 2)(\pi / 180) \\
& \approx 3.5 \mathrm{~cm}^{2} .
\end{aligned}
$$

Remark: The computed area is $A=(10)(15) \sin (\pi / 6)=75 \mathrm{~cm}^{2}$, so the relative error is $\Delta A / A=3.5 / 75 \approx 4.7 \%$.

Problem 4. Consider the scalar field $f(x, y, z)=x^{2}+y^{4}+z^{2} x$.
(a) Compute the gradient vector field ∇f.

$$
\begin{aligned}
\nabla f(x, y, z) & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& =\left\langle 2 x+z^{2}, 4 y^{3}, 2 z x\right\rangle .
\end{aligned}
$$

(b) Note that $f(1,1,1)=3$. Use your answer from part (a) to find the equation of the tangent plane to the surface $x^{2}+y^{4}+z^{2} x=3$ at the point $(1,1,1)$.

The equation of the tangent plane to the level surface $f(x, y, z)=3$ at the point $(1,1,1)$ is

$$
\begin{aligned}
\nabla f(1,1,1) \bullet\langle x-1, y-1, z-1\rangle & =0 \\
\left\langle 2(1)+(1)^{2}, 3(1)^{3}, 2(1)(1)\right\rangle \bullet\langle x-1, y-1, z-1\rangle & =0 \\
\langle 3,4,2\rangle \bullet\langle x-1, y-1, z-1\rangle & =0 \\
3(x-1)+4(y-1)+2(z-1) & =0 \\
3 x+4 y+2 z & =9 .
\end{aligned}
$$

Here is a picture:

Problem 5. The function $f(x, y)=\sin (x) \sin (y)$ has infinitely many critical points. Here are three of them:

$$
(0,0), \quad(\pi / 2, \pi / 2), \quad(\pi / 2,-\pi / 2) .
$$

(a) Compute the Hessian matrix of $f(x, y)$ and its determinant.

First we compute all first and second derivatives:

$$
\begin{aligned}
f_{x} & =\cos (x) \sin (y), \\
f_{y} & =\sin (x) \cos (y), \\
f_{x x} & =-\sin (x) \sin (y), \\
f_{y y} & =-\sin (x) \sin (y), \\
f_{x y} & =\cos (x) \cos (y), \\
f_{y x} & =\cos (x) \cos (y) .
\end{aligned}
$$

Hence the Hessian determinant is

$$
\begin{aligned}
\operatorname{det}(H f) & =\operatorname{det}\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
-\sin (x) \sin (y) & \cos (x) \cos (y) \\
\cos (x) \cos (y) & -\sin (x) \sin (y)
\end{array}\right) \\
& =[\sin (x) \sin (y)]^{2}-[\cos (x) \cos (y)] .
\end{aligned}
$$

(b) Use the second derivative test to determine whether each of the three critical points listed above is a local max, local min or a saddle point.

The critical point $(0,0)$ satisfies $\operatorname{det}(H f)(0,0)=\left[\sin (0)^{2}\right]^{2}-\left[\cos (0)^{2}\right]^{2}=0-1=$ $-1<0$, so this is a saddle point. The critical point $(\pi / 2, \pi / 2)$ satisfies

$$
\operatorname{det}(H f)(\pi / 2, \pi / 2)=\left[\sin (\pi / 2)^{2}\right]^{2}-\left[\cos (\pi / 2)^{2}\right]^{2}=1^{2}-0^{2}=1>0,
$$

so this is a local max or min. Since $f_{x x}(\pi / 2, \pi / 2)=-\sin (\pi / 2)^{2}=-1<0$ it is a local max. The critical point $(\pi / 2,-\pi / 2)$ satisfies

$$
\begin{aligned}
\operatorname{det}(H f)(\pi / 2,-\pi / 2) & =[\sin (\pi / 2) \sin (-\pi / 2)]^{2}-[\cos (\pi / 2) \cos (-\pi / 2)]^{2} \\
& =[(1)(-1)]^{2}-[0]^{2} \\
& =1<0,
\end{aligned}
$$

so this is a local max or min. Since $f_{x x}(\pi / 2,-\pi / 2)=-\sin (\pi / 2) \sin (-\pi / 2)=$ $-(1)(-1)=1>0$ it is a local min. Here is a picture:

