
Math 310 Fall 2023
Homework 5 Drew Armstrong

1. Integral Along a Parabola. Integrate the scalar function f(x, y) = x along the
parametrized curve r(t) = (t, t2) for 0 ≤ t ≤ 1.

The velocity vector is r′(t) = 〈1, 2t〉 and the value of the function f(x, y) = x at the point
r(t) = (x(t), y(t)) = (t, t2) is

f(r(t)) = f(x(t), y(t)) = x(t) = t.

Hence the integral is∫
curve

f =

∫ 1

0
f(r(t))‖r′(t)‖ dt

=

∫ 1

0
t
√

12 + (2t)2 dt

=

∫ 1

0
t
√

1 + 4t2 dt

=
1

8

∫ u=5

u=1

√
u du (u = 1 + 4t2, du = 8t dt)

=
1

8

[
u3/2

3/2

]5
1

=
1

12

(
53/2 − 13/2

)
≈ 0.84.

Remark: We can think of this as the area of a wall whose base is a the parabola (t, t2) for
0 ≤ t ≤ 1, and whose height above the point (t, t2) is t:1

1https://www.desmos.com/3d/dda5d91337
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2. Projection. Let F and u be any vectors in Rn with ‖u‖ = 1.

(a) The component of F in the direction of u has the form tu for some scalar t. Prove that
t = F • u. [Hint: This is much easier than it looks. We assume that the vector F− tu
is perpendicular to u so their dot product is zero: (F− tu) • u = 0. Solve for t.]

(b) Draw a picture of the three vectors F, u and (F • u)u.

(a): We have assumed that ‖u‖ = 1, so that u • u = ‖u‖2 = 1. And we have assumed that
F− tu and u are perpendicular, so that

(F− tu) • u = 0

F • u− tu • u = 0

F • u = tu • u
F • u = t.

It follows that the projection of F onto u is tu = (F • u)u.

(b): There are many ways to picture this. Here is one way:

Remark: It we let θ denote the angle between u and F, measured tail-to-tail, then we can also
express the projection as tu where t = F •u = ‖F‖‖u‖ cos θ = ‖F‖ cos θ. However, angles are
awkward to work with, so we prefer to express the projection in terms of the dot product.

3. Area a Parallelogram. For any two vectors x,y in R3 prove that

‖x× y‖ =

√
det

(
x • x x • y
x • y y • y

)
[Hint: Let θ be the angle between x and y, measured tail-to-tail. From a previous chapter we
know that ‖x× y‖ = ‖x‖‖y‖ sin θ and x • y = ‖x‖‖y‖ cos θ.]

Let θ be the angle between vectors x and y, measured tail-to-tail. We saw in a previous
chapter that x • y = ‖x‖‖y‖ cos θ and ‖x× y‖ = ‖x‖‖y‖ sin θ. Hence we have

det

(
x • x x • y
x • y y • y

)
= (x • x)(y • y)− (x • y)2

= ‖x‖2‖y‖2 − (‖x‖‖y‖ cos θ)2

= ‖x‖2‖y‖2 − ‖x‖2‖y‖2 cos2 θ

= ‖x‖2‖y‖2(1− cos2 θ)

= ‖x‖2‖y‖2 sin2 θ

= (‖x‖‖y‖ sin θ)2

= ‖x× y‖2.
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Then taking the square root of each side gives the result.

Remark: The factor ‖ru× rv‖ appears in the usual definition of the integral over a 2D surface
living in 3D. But the cross product only exists in 3D. By using the determinant formula above
we can define the integral of a scalar function f over a two-dimensional parametrized surface
r(u, v) living in higher-dimensional space:∫∫

surface
f =

∫∫
f(r(u, v))

√
det

(
ru • ru ru • rv
rv • ru rv • rv

)
dudv.

Even in three dimensions, this formula is sometimes easier than the cross product formula.

4. A Parametrized Torus. Fix two radii a > b > 0 and consider the parametrized torus

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉
= 〈(a+ b cos(u)) cos(v), (a+ b cos(u)) sin(v), b sin(u)〉,

with 0 ≤ u ≤ 2π and 0 ≤ v ≤ 2π.

(a) Compute the tangent vectors ru = 〈xu, yu, zu〉 and rv = 〈xv, yv, zv〉.
(b) Use your answer from part (a) to show that

ru • ru = b2,

rv • rv = (a+ b cos(u))2,

ru • rv = 0.

(c) Use part (b) and Problem 3 to show that ‖ru × rv‖ = b(a+ b cos(u)).
(d) Use part (c) to compute the surface area of the torus:

∫∫
1 · ‖ru × rv‖ dudv.

Remark: Here is a picture of the torus with a = 5 and b = 1:2

(a): We have

ru = 〈−b sinu cos v,−b sinu sin v, b cosu〉,
rv = 〈−(a+ b cosu) sin v, (a+ b cosu) cos v, 0〉.

2https://www.desmos.com/3d/4c95305123
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(b): We have

ru • ru = (−b sinu cos v)2 + (−b sinu sin v)2 + (b cosu)2

= b2 sin2 u cos2 v + b2 sin2 u sin2 v + b2 cos2 u

= b2 sin2 u((((((((
(cos2 v + sin2 v) + b2 cos2 u

= b2((((((((
(sin2 u+ cos2 u)

= b2

and

rv • rv = (−(a+ b cosu) sin v)2 + ((a+ b cosu) cos v)2 + 02

= (a+ b cosu)2 sin2 v + (a+ b cosu)2 cos2 v

= (a+ b cosu)2((((((((
(sin2 v + cos2 v)

= (a+ b cosu)2

and

ru • rv = (−b sinu cos v)(−(a+ b cosu) sin v) + (−b sinu sin v)((a+ b cosu) cos v) + 0

= b sinu cos v sin v(a+ b cosu)− b sinu cos v sin v(a+ b cosu)

= 0.

(c): It follows from part (b) and Problem 3 that

‖ru × rv‖ =

√
det

(
ru • ru ru • rv
ru • rv rv • rv

)

=

√
det

(
b2 0
0 (a+ b cosu)2

)
=
√
b2(a+ b cosu)2 − (0)(0)

= b(a+ b cosu).

This expression is always positive because we have assumed that a > b > 0.

(d): Recall that the surface of the torus is parametrized by r(u, v) with 0 ≤ u ≤ 2π and
0 ≤ v ≤ 2π. Hence the surface area of the torus is∫∫

torus
1 =

∫∫
1 · ‖ru × rv‖ dudv

=

∫∫
b(a+ b cosu) dudv

= b

∫ 2π

0
1 dv

∫ 2π

0
(a+ b cosu) du

= b(2π) [au− b sinu]2π0
= b(2π) (2πa− b sin(2π)− a(0) + b sin(0))

= 4π2ab.

Remark: A rectangle with side lengths 2πa and 2πb has area (2πa)(2πb) = 4π2ab. We can
turn this rectangle into a torus by first rolling the rectangle into a tube of radius b and length
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2πa, then curving the tube into a torus. The first operation does not affect the area. The
second operation does affect the area, however the squishing on the inside of the torus and
the stretching on the outside of the torus exactly cancel, so the torus has the same surface
area as the original rectangle. [We can avoid stretching by working in four-dimensional space.]

5. A Conservative Vector Field. Consider the scalar function f(x, y, z) = xyz + 7 and
its gradient vector field F(x, y, z) = ∇f(x, y, z) = 〈yz, xz, xy〉. Recall that the integral of a
vector field F along a parametrized curve r(t) is defined as follows:

∫
Curve

F =

∫ (
F(r(t)) • r′(t)

‖r′(t)‖

)
‖r′(t)‖ dt =

∫
F(r(t)) • r′(t) dt.

(a) Compute the integral of F along the curve r(t) = (t, t, t) for 0 ≤ t ≤ 1.
(b) Compute the integral of F along the curve r(t) = (t, t2, t3) for 0 ≤ t ≤ 1.
(c) Compute f(1, 1, 1)− f(0, 0, 0).

Remark: Here is a picture of the two paths from parts (a) and (b):

The vector field F = 〈yz, xz, xy〉 is quite difficult to visualize. Here is a very rough picture:
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Note that the vector field is pushing away from the origin in four different directions.

(a): If r(t) = (t, t, t) then we have r′(t) = 〈1, 1, 1〉, and the integral of F along r is∫ 1

0
F(r(t)) • r′(t) dt =

∫ 1

0
F(t, t, t) • 〈1, 1, 1〉 dt

=

∫ 1

0
〈t2, t2, t2〉 • 〈1, 1, 1〉 dt

=

∫ 1

0
(t2 + t2 + t2) dt

=

∫ 1

0
3t2 dt

= 3
t3

3

∣∣∣∣1
0

= 1.

(b): If r(t) = (t, t2, t3) then we have r′(t) = 〈1, 2t, 3t2〉, and the integral of F along r is∫ 1

0
F(r(t)) • r′(t) dt =

∫ 1

0
F(t, t2, t3) • 〈1, 2t, 3t2〉 dt

=

∫ 1

0
〈t5, t4, t3〉 • 〈1, 2t, 3t2〉 dt

=

∫ 1

0
(t5 + 2t5 + 3t5) dt

=

∫ 1

0
6t5 dt

= 6
t6

6

∣∣∣∣1
0

= 1.
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(c): Note that f(1, 1, 1)− f(0, 0, 0) = (1 · 1 · 1 + 7)− (0 · 0 · 0 + 7) = 8− 7 = 1.

Remark: The answers from parts (a), (b), (c) are the same because of the Fundamental
Theorem of Line Integrals, which says that for any scalar field f and for any path r(t) we have∫ 1

0
∇f(r(t)) • r′(t) dt = f(r(1))− f(r(0)).

6. Circulation of Vector Fields. Consider the vector fields F = 〈−y, x〉 and G = 〈x, y〉.
(a) Compute the integral of F around the circle r(t) = (cos t, sin t) for 0 ≤ t ≤ 2π and

observe that the result is not equal to zero. It follows from this that F cannot be
expressed in the form F = ∇f for any scalar function f(x, y).

(b) Compute the integral of G around the circle r(t) = (cos t, sin t) for 0 ≤ t ≤ 2π and
observe that the result is equal to zero.

(c) In fact, it is true that the integral of G around any closed loop is zero, which implies
that G = ∇g for some scalar function g(x, y). Find one such function. [Hint: You
could just guess, but there is a systematic method based on the Fundamental Theorem
of Line Integrals: ∫ 1

0
∇g(r(t)) • r′(t), dt = g(r(1))− g(r(0)).

The path r(t) = (xt, yt) has r(1) = (x, y). Compute the function

g(x, y) :=

∫ 1

0
G(r(t)) • r′(t) dt =

∫ 1

0
G(xt, yt) • 〈x, y〉 dt

and check that this function satisfies ∇g = G.]

(a): We will integrate the vector field F = 〈−y, x〉 around a counterclockwise circle r(t) =
(cos t, sin t). Here is a picture:
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Since the vector field is always pointing in the same direction as the velocity r′(t) we expect
that the answer will be a positive number. Indeed, we have∫ 2π

0
F(r(t)) • r′(t) dt =

∫ 2π

0
F(cos t, sin t) • 〈− sin t, cos t〉 dt

=

∫ 2π

0
〈− sin t, cos t〉 • 〈− sin t, cos t〉 dt

=

∫ 2π

0
((− sin t)2 + (cos t)2) dt

=

∫ 2π

0
1 dt

= 2π.

(b): We will integrate the vector field G = 〈x, y〉 around a counterclockwise circle r(t) =
(cos t, sin t). Here is a picture:

Since the vector field G is always perpendicular to the velocity r′(t), we are just integrating
the number zero over the curve:∫ 2π

0
G(r(t)) • r′(t) dt =

∫ 2π

0
G(cos t, sin t) • 〈− sin t, cos t〉 dt

=

∫ 2π

0
〈cos t, sin t〉 • 〈− sin t, cos t〉 dt

=

∫ 2π

0
(− cos t sin t+ sin t cos t) dt

=

∫ 2π

0
0 dt

= 0.

(c): Since the integral of F around a closed loop is not zero, the Fundamental Theorem of
Line Integrals tells us that there does not exist any scalar function f such that F = ∇f . But
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I claim that there does exist a scalar function g satisfying G = ∇g. This function must satisfy

∇g = 〈∂g/∂x, ∂g/∂y〉 = 〈x, y〉,
so that ∂g/∂x = x and ∂g/∂y = y. Can you think of such a function?

You could try an ad hoc method, but here is a systematic method. We define g(x, y) as the
integral of G over the path r(t) = (xt, yt) for 0 ≤ t ≤ 1:

g(x, y) :=

∫ 1

0
G(r(t)) • r′(t) dt

=

∫ 1

0
G(xt, yt) • 〈x, y〉 dt

=

∫ 1

0
〈xt, yt〉 • 〈x, y〉 dt

=

∫ 1

0
(x2t+ y2t) dt

=

[
x2
t2

2
+ y2

t2

2

]1
0

= (x2 + y2)/2.

We verify that

∇
(
x2 + y2

2

)
=

〈
2x+ 0

2
,
0 + 2y

2

〉
= 〈x, y〉.

Remark: This method works because of the Fundamental Theorem of Line Integrals. In
Calculus I you learned that for any function G : R→ R, the function

g(x) :=

∫ x

anything
G(t) dt

satisfies g′(x) = G(x). The lower limit is arbitrary. We can use a similar trick for line integrals
of vector fields. Roughly, we define

g(x, y) :=

∫ (x,y)

any point
G(r(t)) • r′(t) dt,

where the integral is taken over any path r(t) with endpoint (x, y). If G is a conservative3

vector field then this integral is independent of the shape of the path, and one can use the
Fundamental Theorem of Line Integrals to show that ∇g = G. In order to use this trick, I
chose the simplest possible path with endpoint (x, y); namely, a straight line from (0, 0) to
(x, y). Changing the starting point would only add a scalar to g, which does not change ∇g.

3We will discuss this concept in detail next week.


