1. Integral Along a Parabola. Integrate the scalar function $f(x, y)=x$ along the parametrized curve $\mathbf{r}(t)=\left(t, t^{2}\right)$ for $0 \leq t \leq 1$.
2. Projection. Let \mathbf{F} and \mathbf{u} be any vectors in \mathbb{R}^{n} with $\|\mathbf{u}\|=1$.
(a) The component of \mathbf{F} in the direction of \mathbf{u} has the form $t \mathbf{u}$ for some scalar t. Prove that $t=\mathbf{F} \bullet \mathbf{u}$. [Hint: This is much easier than it looks. We assume that the vector $\mathbf{F}-t \mathbf{u}$ is perpendicular to \mathbf{u} so their dot product is zero: $(\mathbf{F}-t \mathbf{u}) \bullet \mathbf{u}=0$. Solve for t.]
(b) Draw a picture of the three vectors \mathbf{F}, \mathbf{u} and $(\mathbf{F} \bullet \mathbf{u}) \mathbf{u}$.
3. Area a Parallelogram. For any two vectors \mathbf{x}, \mathbf{y} in \mathbb{R}^{3} prove that

$$
\|\mathbf{x} \times \mathbf{y}\|=\sqrt{\operatorname{det}\left(\begin{array}{lll}
\mathrm{x} \bullet & \mathrm{x} & \mathrm{x} \bullet \mathrm{y} \\
\mathrm{x} \bullet \mathrm{y} & \mathrm{y} & \mathrm{y}
\end{array}\right)}
$$

[Hint: Let θ be the angle between \mathbf{x} and \mathbf{y}, measured tail-to-tail. From a previous chapter we know that $\|\mathbf{x} \times \mathbf{y}\|=\|\mathbf{x}\|\|\mathbf{y}\| \sin \theta$ and $\mathbf{x} \bullet \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$.]
4. A Parametrized Torus. Fix two radii $a>b>0$ and consider the parametrized torus

$$
\begin{aligned}
\mathbf{r}(u, v) & =\langle x(u, v), y(u, v), z(u, v)\rangle \\
& =\langle(a+b \cos (u)) \cos (v),(a+b \cos (u)) \sin (v), b \sin (u)\rangle,
\end{aligned}
$$

with $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 2 \pi$.
(a) Compute the tangent vectors $\mathbf{r}_{u}=\left\langle x_{u}, y_{u}, z_{u}\right\rangle$ and $\mathbf{r}_{v}=\left\langle x_{v}, y_{v}, z_{v}\right\rangle$.
(b) Use your answer from part (a) to show that

$$
\begin{aligned}
\mathbf{r}_{u} \bullet \mathbf{r}_{u} & =b^{2} \\
\mathbf{r}_{v} \bullet \mathbf{r}_{v} & =(a+b \cos (u))^{2} \\
\mathbf{r}_{u} \bullet \mathbf{r}_{v} & =0
\end{aligned}
$$

(c) Use part (b) and Problem 3 to show that $\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|=b(a+b \cos (u))$.
(d) Use part (c) to compute the surface area of the torus: $\iint 1 \cdot\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v$.
5. A Conservative Vector Field. Consider the scalar function $f(x, y, z)=x y z+7$ and its gradient vector field $\mathbf{F}(x, y, z)=\nabla f(x, y, z)=\langle y z, x z, x y\rangle$. Recall that the integral of a vector field \mathbf{F} along a parametrized curve $\mathbf{r}(t)$ is defined as follows:

$$
\int_{\text {Curve }} \mathbf{F}=\int\left(\mathbf{F}(\mathbf{r}(t)) \bullet \frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}\right)\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t
$$

(a) Compute the integral of \mathbf{F} along the curve $\mathbf{r}(t)=(t, t, t)$ for $0 \leq t \leq 1$.
(b) Compute the integral of \mathbf{F} along the curve $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right)$ for $0 \leq t \leq 1$.
(c) Compute $f(1,1,1)-f(0,0,0)$.
6. Circulation of Vector Fields. Consider the vector fields $\mathbf{F}=\langle-y, x\rangle$ and $\mathbf{G}=\langle x, y\rangle$.
(a) Compute the integral of \mathbf{F} around the circle $\mathbf{r}(t)=(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$ and observe that the result is not equal to zero. It follows from this that \mathbf{F} cannot be expressed in the form $\mathbf{F}=\nabla f$ for any scalar function $f(x, y)$.
(b) Compute the integral of \mathbf{G} around the circle $\mathbf{r}(t)=(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$ and observe that the result is equal to zero.
(c) In fact, it is true that the integral of \mathbf{G} around any closed loop is zero, which implies that $\mathbf{G}=\nabla g$ for some scalar function $g(x, y)$. Find one such function. [Hint: You could just guess, but there is a systematic method based on the Fundamental Theorem of Line Integrals:

$$
\int_{0}^{1} \nabla g(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t), d t=g(\mathbf{r}(1))-g(\mathbf{r}(0)) .
$$

The path $\mathbf{r}(t)=(x t, y t)$ has $\mathbf{r}(1)=(x, y)$. Compute the function

$$
g(x, y):=\int_{0}^{1} \mathbf{G}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t=\int_{0}^{1} \mathbf{G}(x t, y t) \bullet\langle x, y\rangle d t
$$

and check that this function satisfies $\nabla g=\mathbf{G}$.]

