Problem 1. An Integral in the Plane. Consider the function $f(x, y)=x$. Let D be the region that is inside the circle $x^{2}+y^{2}=4$, above the line $y=0$ and below the line $y=x$.
(a) Draw the region. [Hint: It looks like $1 / 8$ of a pie.]
(b) Compute the integral $\iint_{D} f(x, y) d x d y$ by converting to polar coordinates.
(c) Compute the integral $\iint_{D} f(x, y) d x d y$ in Cartesian coordinates by cutting the region D into two pieces D_{1} and D_{2} separated by the line $x=\sqrt{2}$. Check that you answers from parts (a) and (b) are the same.
(a):

(b): The region D is parametrized in polar coordinates by $0 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 4$. Hence

$$
\begin{aligned}
\iint_{D} x d x d y & =\iint_{D} x r d r d \theta \\
& =\iint_{D} r \cos \theta r d r d \theta \\
& =\iint_{D} r^{2} \cos \theta d r d \theta \\
& =\int_{0}^{2} r^{2} d r \cdot \int_{0}^{\pi / 4} \cos \theta d \theta \quad \quad \text { (separable) } \\
& =\left[\frac{r^{3}}{3}\right]_{0}^{2} \cdot[\sin \theta]_{0}^{\pi / 4} \\
& =\left(\frac{2^{3}}{3}-\frac{0^{3}}{3}\right) \cdot(\sin (\pi / 4)-\sin 0) \\
& =\frac{8}{3} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

(c): We divide the region D into D_{1} and D_{2} as follows:

The region D_{1} is parametrized by $0 \leq x \leq \sqrt{2}$ and $0 \leq y \leq x$, so that

$$
\begin{aligned}
\iint_{D_{1}} x d x d y & =\int_{0}^{\sqrt{2}}\left(\int_{0}^{x} x d y\right) d x \\
& =\int_{0}^{\sqrt{2}}[x y]_{y=0}^{y=x} d x \\
& =\int_{0}^{\sqrt{2}} x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}} \\
& =\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

The region D_{2} is parametrized by $\sqrt{2} \leq x \leq 2$ and $0 \leq y \leq \sqrt{4-x^{2}}$, so that

$$
\begin{array}{rlr}
\iint_{D_{2}} x d x d y & =\int_{\sqrt{2}}^{2}\left(\int_{0}^{\sqrt{4-x^{2}}} x d y\right) d x \\
& =\int_{\sqrt{2}}^{2}[x y]_{y=0}^{y=\sqrt{4-x^{2}}} d x \\
& =\int_{x=\sqrt{2}}^{x=2} x \sqrt{4-x^{2}} d x \\
& =\int_{u=0}^{u=2}-\frac{1}{2} \sqrt{u} d u \\
& =\int_{0}^{2} \frac{1}{2} \sqrt{u} d u \\
& =\left[\frac{u^{3 / 2}}{3}\right]_{0}^{2} \\
& =\frac{2 \sqrt{2}}{3}
\end{array}
$$

We conclude that

$$
\iint_{D} x d x d y=\iint_{D_{1}} x d x d y+\iint_{D_{2}} x d x d y=\frac{2 \sqrt{2}}{3}+\frac{2 \sqrt{2}}{3}=\frac{4 \sqrt{2}}{3}
$$

which matches our answer from part (b).
[Remark: This problem illustrates the benefit of polar coordinates.]
Problem 2. Center of Mass. Let D be the same region as in Problem 1. Think of this as a thin metal plate with a constant density of 1 unit of mass per unit of area. Compute the following using polar coordinates.
(a) Compute the total mass $\iint_{D} 1 d x d y$.
(b) Compute the moment about the y axis: $\iint_{D} x d x d y$.
(c) Compute the moment about the x axis: $\iint_{D} y d x d y$.
(d) Find the center of mass.
(a): As in Problem 1, we can parametrize this region in polar coordinates as $0 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 4$. The area is

$$
\begin{align*}
\operatorname{area}(\mathrm{D}) & =\iint_{D} 1 d x d y \\
& =\iint_{D} 1 r d r d \theta \\
& =\int_{0}^{2} r d r \cdot \int_{0}^{\pi / 4} 1 d \theta \tag{separable}\\
& =\left[\frac{r^{2}}{2}\right]_{0}^{2} \cdot[\theta]_{0}^{\pi / 4} \\
& =\left(\frac{2^{2}}{2}-\frac{0^{2}}{2}\right) \cdot\left(\frac{\pi}{4}-0\right) \\
& =\frac{\pi}{2}
\end{align*}
$$

Indeed, our pie slice is $1 / 8$ of a circle of radius 2 , which has area $\pi(2)^{2}=4 \pi$.
(b): We already computed this in Problem 1(b). The answer is $4 \sqrt{2} / 3$.
(c): Here we have

$$
\begin{aligned}
\iint_{D} y d x d y & =\iint_{D} y r d r d \theta \\
& =\iint_{D} r \sin \theta r d r d \theta \\
& =\iint_{D} r^{2} \sin \theta d r d \theta \\
& =\int_{0}^{2} r^{2} d r \cdot \int_{0}^{\pi / 4} \sin \theta d \theta \\
& =\left[\frac{r^{3}}{3}\right]_{0}^{2} \cdot[-\cos \theta]_{0}^{\pi / 4} \\
& =\left(\frac{2^{3}}{3}-\frac{0^{3}}{3}\right) \cdot(-\cos (\pi / 4)+\cos 0) \\
& =\frac{8}{3} \cdot\left(-\frac{\sqrt{2}}{2}+1\right)
\end{aligned}
$$

$$
=\frac{4(2-\sqrt{2})}{3} .
$$

(d): The center of mass is (\bar{x}, \bar{y}) where

$$
\bar{x}=\frac{\iint_{D} x}{\iint_{D} 1}=\frac{4 \sqrt{2} / 3}{\pi / 2}=\frac{8 \sqrt{2}}{3 \pi} \quad \text { and } \quad \bar{y}=\frac{\iint_{D} y}{\iint_{D} 1}=\frac{4(2-\sqrt{2}) / 3}{\pi / 2}=\frac{8(2-\sqrt{2})}{3 \pi} .
$$

My computer says that $(\bar{x}, \bar{y}) \approx(1.2,0.5)$. Here is a picture:

Problem 3. Change of Coordinates. Consider the function $f(x, y)=x^{2}+y^{2}$. Let D be the square-shaped region in the x, y-plane bounded by the four lines $x+y= \pm 2$ and $x-y= \pm 2$.
(a) Draw the region.
(b) Consider the change of variables $x=u+v$ and $y=u-v$. Compute the area stretch factor (i.e., the absolute value of the determinant of the Jacobian matrix.)
(c) Compute the integral $\iint_{D}\left(x^{2}+y^{2}\right) d x d y$ by converting to u, v-coordinates. [Hint: The region D in the u, v-plane is parametrized by $-1 \leq u \leq 1$ and $-1 \leq v \leq 1$.]
(a): Desmos produced the following picture ${ }^{1}$

[^0](b): This region is a little bit difficult to parametrize in Cartesian coordinates, so we change coordinates to $x=u+v$ and $y=u-v$. The area stretch factor is
\[

\left|\operatorname{det}\left($$
\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}
$$\right)\right|=\left|\operatorname{det}\left($$
\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}
$$\right)\right|=|(1)(-1)-(1)(1)|=|-2|=2 .
\]

(c): From part (b) we know that $d x d y=2 d u d v$. We also have

$$
x^{2}+y^{2}=(u+v)^{2}+(u-v)^{2}=u^{2}+2 u v+v^{2}+u^{2}-2 u v+v^{2}=2\left(u^{2}+v^{2}\right) .
$$

Furthermore, we note that $x+y=(u+v)+(u-v)=2 u$ and $x-y=(u+v)-(u-v)=2 v$, so the region defined by $-2 \leq x+y \leq 2$ and $-2 \leq x-y \leq 2$ becomes $-2 \leq 2 u \leq 2$ and $-2 \leq 2 v \leq 2$, i.e., $-1 \leq u \leq 1$ and $-1 \leq v \leq 1$. Thus we have

$$
\begin{aligned}
\iint_{D}\left(x^{2}+y^{2}\right) d x d y & =\iint_{D} 2\left(u^{2}+v^{2}\right) 2 d u d v \\
& =4 \int_{-1}^{1}\left(\int_{-1}^{1}\left(u^{2}+v^{2}\right) d u\right) d v \\
& =4 \int_{-1}^{1}\left[\frac{u^{3}}{3}+v^{2} u\right]_{u=-1}^{u=1} d v \\
& =4 \int_{-1}^{1}\left(\frac{2}{3}+2 v^{2}\right) d v \\
& =4\left[\frac{2}{3} v+2 \frac{v^{3}}{3}\right]_{-1}^{1} \\
& =4\left(\frac{4}{3}+\frac{4}{3}\right) \\
& =\frac{32}{3}
\end{aligned}
$$

Remark: One can check that this answer is correct by doing the more difficult computation in Cartesian coordinates. The sideways square D breaks into two triangles D_{1} and D_{2} where D_{1} is parametrized by $-2 \leq x \leq 0$ and $-2-x \leq y \leq 2+x$ and where D_{2} is parametrized by $0 \leq x \leq 2$ and $-2+x \leq y \leq 2-x$:

Then the integral over D is the sum of the integrals over D_{1} and D_{2}. The integral over D_{1} is

$$
\begin{aligned}
\iint_{D_{1}}\left(x^{2}+y^{2}\right) d x d y & =\int_{-2}^{0}\left(\int_{-2-x}^{2+x}\left(x^{2}+y^{2}\right) d y\right) d y \\
& =\int_{-2}^{0}\left[x^{2} y+\frac{y^{3}}{3}\right]_{y=-2-x}^{y=2+x} d x \\
& =\int_{-2}^{0}\left(x^{2}(2+x)+\frac{(2+x)^{3}}{3}-x^{2}(-2-x)-\frac{(-2-x)^{3}}{3}\right) d x
\end{aligned}
$$

and we do not want to compute this by hand. I put it into my computer and it gave the answer $16 / 3$. The integral over D_{2} is also $16 / 3$, so their sum is $32 / 3$, as expected.

Remark: We can think of the number $32 / 3$ as the mass of a thin plate D with density function $x^{2}+y^{2}$, so the corners of D are heavier than the center. Or we can think of $32 / 3$ as the volume between the square D in the x, y-plane and the surface $z=x^{2}+y^{2}$ in x, y, z-space, which looks like a square-shaped crown ${ }^{[2}$

Problem 4. Integration Over a Rectangular Box. Let B be the rectangular box parametrized by $0 \leq x \leq 1,0 \leq y \leq 2$ and $0 \leq z \leq 3$. Compute the triple integral

$$
\iiint_{B}(x+y+z) d x d y d z
$$

Since the limits of integration are constant we can perform the three integrals in any order. We will integrate over x, y, z in that order:

$$
\int_{0}^{3}\left(\int_{0}^{2}\left(\int_{0}^{1}(x+y+z) d x\right) d y\right) d z
$$

[^1]\[

$$
\begin{aligned}
& =\int_{0}^{3}\left(\int_{0}^{2}\left[\frac{x^{2}}{2}+x y+x z\right]_{x=0}^{x=1} d y\right) d z \\
& =\int_{0}^{3}\left(\int_{0}^{2}\left(\frac{1}{2}+y+z\right) d y\right) d z \\
& =\int_{0}^{3}\left[\frac{1}{2} y+\frac{y^{2}}{2}+y z\right]_{y=0}^{y=2} d z \\
& =\int_{0}^{3}(3+2 z) d z \\
& =\left[3 z+z^{2}\right]_{z=0}^{z=3} \\
& =18
\end{aligned}
$$
\]

I don't have anything interesting to say about this.

Problem 5. Cylindrical Coordinates. Consider a solid cone of radius 1 and height 1 whose base is the unit disk $x^{2}+y^{2} \leq 1$ in the x, y-plane and whose vertex is at the point $(0,0,1)$ in x, y, z-space.
(a) Parametrize the cone using cylindrical coordinates: r, θ, z.
(b) Compute the volume of the cone.
(c) Compute the center of mass $(\bar{x}, \bar{y}, \bar{z})$, assuming that the cone has constant density 1 . [Hint: By symmetry we know that $\bar{x}=0$ and $\bar{y}=0$, so you only have to compute \bar{z}.]
(a): We can parametrize the base circle by $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. Then for an arbitrary point in the base circle with coordinates r, θ we must determine the maximum value of the z-coordinate 3^{3}

[^2]Since the cone is rotationally symmetric about the z-axis, the maximum value of z doesn't depend on θ. To examine the relationship between z and r, consider a vertical slice through the origin:

Note that the surface of the cone intersects this slice in the straight line $z=1-r$. Hence we should take $0 \leq z \leq 1-r$.
(b): Now we can use cylindrical coordinates to compute the volume of the cone:

$$
\begin{aligned}
\operatorname{Vol}(\text { Cone }) & =\iiint_{\text {Cone }} 1 d x d y d z \\
& =\iiint_{\text {Cone }} r d r d \theta d z \quad \quad(d x d y d z=r d r d \theta d z) \\
& =\int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{1} r \cdot\left(\int_{0}^{1-r} 1 d z\right) d r \quad \text { (must integrate } z \text { before } r \text {) } \\
& =\int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{1} r \cdot(1-r) d r \\
& =\int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{1}\left(r-r^{2}\right) d r \\
& =\int_{0}^{2 \pi} 1 d \theta \cdot\left[\frac{r^{2}}{2}-\frac{r^{3}}{3}\right]_{0}^{1} \\
& =2 \pi \cdot\left(\frac{1}{2}-\frac{1}{3}\right) \\
& =\frac{\pi}{3} .
\end{aligned}
$$

Remark: The volume of a cone of radius r and height h is $\pi r^{2} h / 3$. When $r=1$ and $h=1$ this formula gives $\pi / 3$, which agrees with our computation.
(c): By symmety we must have $\bar{x}=0$ and $\bar{y}=0$. The z coordinate of the center of mass is

$$
\bar{z}=\iiint_{\text {Cone }} z d x d y d z / \iiint_{\text {Cone }} 1 d x d y d z
$$

$$
\begin{aligned}
& =\frac{3}{\pi} \cdot \iiint_{\text {Cone }} z r d r d \theta d z \\
& =\frac{3}{\pi} \cdot \int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{1} r \cdot\left(\int_{0}^{1-r} z d z\right) d r \quad \text { (must integrate } z \text { before } r \text {) } \\
& =\frac{3}{\pi} \cdot \int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{1} r \cdot(1-r)^{2} / 2 d r \\
& =\frac{3}{2 \pi} \cdot \int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{1}\left(r^{3}-2 r^{2}+r\right) d r \\
& =\frac{3}{\pi} \cdot \int_{0}^{2 \pi} 1 d \theta \cdot\left[\frac{r^{4}}{4}-2 \frac{r^{3}}{3}+\frac{r^{2}}{2}\right]_{0}^{1} \\
& =\frac{3}{2 \pi} \cdot 2 \pi \cdot\left(\frac{1}{4}-\frac{2}{3}+\frac{1}{2}\right) \\
& =\frac{3}{2 \pi} \cdot 2 \pi \cdot \frac{1}{12} \\
& =\frac{1}{4} .
\end{aligned}
$$

Hence the center of mass is $(0,0,1 / 4)$. Remark: We would get the same result for a cone of any radius and height. The center of mass is always exactly $1 / 4$ of the way from the center of the base to the apex.

Problem 6. Spherical Coordinates. Consider the "ice-cream-cone-shaped" solid region E that is between the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z^{2}=x^{2}+y^{2}$, and satisfies $z \geq 0$. The volume is given by the triple integral:

$$
\operatorname{Vol}(E)=\iiint_{E} 1 d x d y d z .
$$

Compute this integral by converting to spherical coordinates.
Here is a picture of the ice-cream cone, produced with Desmos:[4]

[^3]This region is parametrized by $0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq \pi / 4$. (Note that the boundary of the cone has slope 1 , hence angle $\pi / 4$ from the vertical. One can see this by intersecting the cone $z^{2}=x^{2}+y^{2}$ with any vertical plane, such as $y=0$, to get $z^{2}=x^{2}$, and hence $z= \pm x$. This is a pair of lines of slope ± 1 in the x, z-plane.) Hence the volume is

$$
\begin{array}{rlr}
\operatorname{Vol}(\mathrm{E}) & =\iiint_{E} 1 d x d y d z \\
& =\iiint_{E} \rho^{2} \sin \varphi d r d \theta d z \quad \quad\left(d x d y d z=\rho^{2} \sin \varphi d \rho d \theta d \varphi\right) \\
& =\int_{0}^{1} \rho^{2} d \rho \cdot \int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{\pi / 4} \sin \varphi d \varphi \\
& =\left[\frac{\rho^{3}}{3}\right]_{0}^{1} \cdot[\theta]_{0}^{2 \pi} \cdot[-\cos \varphi]_{0}^{\pi / 4} \\
& =\left(\frac{1}{3}\right)(2 \pi)(-\cos (\pi / 4)+\cos (0)) \\
& =\frac{2 \pi}{3}\left(-\frac{\sqrt{2}}{2}+1\right) \\
& =\frac{2 \pi}{3} \cdot \frac{2-\sqrt{2}}{2} \\
& =\frac{2 \pi(2-\sqrt{2})}{6} \\
& \approx 0.6
\end{array}
$$

Remark: I know that the most difficult part of this material is the visualization and parametrization of regions in \mathbb{R}^{3}. I strongly encourage you to use visualization tools such as Desmos and GeoGebra to build intuition:
https://www.desmos.com/3d
https://www.geogebra.org/3d

[^0]: 1 https://www.desmos.com/calculator/jaxo0awiao

[^1]: 2https://www.desmos.com/3d/1bcc69ab04

[^2]: ${ }^{3}$ https://www.desmos.com/3d/fe66f06a6f

[^3]: ${ }^{4}$ https://www.desmos.com/3d/8f0a6ad917

