
Math 310 Fall 2023
Homework 4 Drew Armstrong

Problem 1. An Integral in the Plane. Consider the function f(x, y) = x. Let D be the
region that is inside the circle x2 + y2 = 4, above the line y = 0 and below the line y = x.

(a) Draw the region. [Hint: It looks like 1/8 of a pie.]
(b) Compute the integral

∫∫
D f(x, y) dxdy by converting to polar coordinates.

(c) Compute the integral
∫∫
D f(x, y) dxdy in Cartesian coordinates by cutting the region

D into two pieces D1 and D2 separated by the line x =
√

2. Check that you answers
from parts (a) and (b) are the same.

(a):

(b): The region D is parametrized in polar coordinates by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π/4. Hence∫∫
D
x dxdy =

∫∫
D
x rdrdθ

=

∫∫
D
r cos θ rdrdθ

=

∫∫
D
r2 cos θ drdθ

=

∫ 2

0
r2 dr ·

∫ π/4

0
cos θ dθ (separable)

=

[
r3

3

]2
0

· [sin θ]π/40

=

(
23

3
− 03

3

)
· (sin(π/4)− sin 0)

=
8

3
·
√

2

2

=
4
√

2

3
.

(c): We divide the region D into D1 and D2 as follows:



The region D1 is parametrized by 0 ≤ x ≤
√

2 and 0 ≤ y ≤ x, so that∫∫
D1

x dxdy =

∫ √2
0

(∫ x

0
x dy

)
dx

=

∫ √2
0

[xy]y=xy=0 dx

=

∫ √2
0

x2 dx

=

[
x3

3

]√2
0

=
2
√

2

3
.

The region D2 is parametrized by
√

2 ≤ x ≤ 2 and 0 ≤ y ≤
√

4− x2, so that∫∫
D2

x dxdy =

∫ 2

√
2

(∫ √4−x2
0

x dy

)
dx

=

∫ 2

√
2

[xy]y=
√
4−x2

y=0 dx

=

∫ x=2

x=
√
2
x
√

4− x2 dx

=

∫ u=2

u=0
−1

2

√
u du (u = 4− x2, du = −2xdx)

=

∫ 2

0

1

2

√
u du

=

[
u3/2

3

]2
0

=
2
√

2

3
.

We conclude that∫∫
D
x dxdy =

∫∫
D1

x dxdy +

∫∫
D2

x dxdy =
2
√

2

3
+

2
√

2

3
=

4
√

2

3
,



which matches our answer from part (b).

[Remark: This problem illustrates the benefit of polar coordinates.]

Problem 2. Center of Mass. Let D be the same region as in Problem 1. Think of this as
a thin metal plate with a constant density of 1 unit of mass per unit of area. Compute the
following using polar coordinates.

(a) Compute the total mass
∫∫
D 1 dxdy.

(b) Compute the moment about the y axis:
∫∫
D x dxdy.

(c) Compute the moment about the x axis:
∫∫
D y dxdy.

(d) Find the center of mass.

(a): As in Problem 1, we can parametrize this region in polar coordinates as 0 ≤ r ≤ 2 and
0 ≤ θ ≤ π/4. The area is

area(D) =

∫∫
D

1 dxdy

=

∫∫
D

1 rdrdθ

=

∫ 2

0
r dr ·

∫ π/4

0
1 dθ (separable)

=

[
r2

2

]2
0

· [θ]π/40

=

(
22

2
− 02

2

)
·
(π

4
− 0
)

=
π

2
.

Indeed, our pie slice is 1/8 of a circle of radius 2, which has area π(2)2 = 4π.

(b): We already computed this in Problem 1(b). The answer is 4
√

2/3.

(c): Here we have∫∫
D
y dxdy =

∫∫
D
y rdrdθ

=

∫∫
D
r sin θ rdrdθ

=

∫∫
D
r2 sin θ drdθ

=

∫ 2

0
r2 dr ·

∫ π/4

0
sin θ dθ (separable)

=

[
r3

3

]2
0

· [− cos θ]
π/4
0

=

(
23

3
− 03

3

)
· (− cos(π/4) + cos 0)

=
8

3
·

(
−
√

2

2
+ 1

)



=
4(2−

√
2)

3
.

(d): The center of mass is (x̄, ȳ) where

x̄ =

∫∫
D x∫∫
D 1

=
4
√

2/3

π/2
=

8
√

2

3π
and ȳ =

∫∫
D y∫∫
D 1

=
4(2−

√
2)/3

π/2
=

8(2−
√

2)

3π
.

My computer says that (x̄, ȳ) ≈ (1.2, 0.5). Here is a picture:

Problem 3. Change of Coordinates. Consider the function f(x, y) = x2 + y2. Let D
be the square-shaped region in the x, y-plane bounded by the four lines x + y = ±2 and
x− y = ±2.

(a) Draw the region.
(b) Consider the change of variables x = u + v and y = u − v. Compute the area stretch

factor (i.e., the absolute value of the determinant of the Jacobian matrix.)
(c) Compute the integral

∫∫
D(x2 + y2) dxdy by converting to u, v-coordinates. [Hint: The

region D in the u, v-plane is parametrized by −1 ≤ u ≤ 1 and −1 ≤ v ≤ 1.]

(a): Desmos produced the following picture:1

1https://www.desmos.com/calculator/jaxo0awiao

https://www.desmos.com/calculator/jaxo0awiao


(b): This region is a little bit difficult to parametrize in Cartesian coordinates, so we change
coordinates to x = u+ v and y = u− v. The area stretch factor is∣∣∣∣det

(
xu xv
yu yv

)∣∣∣∣ =

∣∣∣∣det

(
1 1
1 −1

)∣∣∣∣ = |(1)(−1)− (1)(1)| = | − 2| = 2.

(c): From part (b) we know that dxdy = 2dudv. We also have

x2 + y2 = (u+ v)2 + (u− v)2 = u2 + 2uv + v2 + u2 − 2uv + v2 = 2(u2 + v2).

Furthermore, we note that x+ y = (u+ v) + (u− v) = 2u and x− y = (u+ v)− (u− v) = 2v,
so the region defined by −2 ≤ x + y ≤ 2 and −2 ≤ x − y ≤ 2 becomes −2 ≤ 2u ≤ 2 and
−2 ≤ 2v ≤ 2, i.e., −1 ≤ u ≤ 1 and −1 ≤ v ≤ 1. Thus we have∫∫

D
(x2 + y2) dxdy =

∫∫
D

2(u2 + v2) 2dudv

= 4

∫ 1

−1

(∫ 1

−1
(u2 + v2) du

)
dv

= 4

∫ 1

−1

[
u3

3
+ v2u

]u=1

u=−1
dv

= 4

∫ 1

−1

(
2

3
+ 2v2

)
dv

= 4

[
2

3
v + 2

v3

3

]1
−1

= 4

(
4

3
+

4

3

)
=

32

3
.

Remark: One can check that this answer is correct by doing the more difficult computation
in Cartesian coordinates. The sideways square D breaks into two triangles D1 and D2 where
D1 is parametrized by −2 ≤ x ≤ 0 and −2− x ≤ y ≤ 2 + x and where D2 is parametrized by
0 ≤ x ≤ 2 and −2 + x ≤ y ≤ 2− x:



Then the integral over D is the sum of the integrals over D1 and D2. The integral over D1 is∫∫
D1

(x2 + y2) dxdy =

∫ 0

−2

(∫ 2+x

−2−x
(x2 + y2) dy

)
dy

=

∫ 0

−2

[
x2y +

y3

3

]y=2+x

y=−2−x
dx

=

∫ 0

−2

(
x2(2 + x) +

(2 + x)3

3
− x2(−2− x)− (−2− x)3

3

)
dx,

and we do not want to compute this by hand. I put it into my computer and it gave
the answer 16/3. The integral over D2 is also 16/3, so their sum is 32/3, as expected.

Remark: We can think of the number 32/3 as the mass of a thin plate D with density function
x2+y2, so the corners of D are heavier than the center. Or we can think of 32/3 as the volume
between the square D in the x, y-plane and the surface z = x2 + y2 in x, y, z-space, which
looks like a square-shaped crown:2

Problem 4. Integration Over a Rectangular Box. Let B be the rectangular box
parametrized by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 and 0 ≤ z ≤ 3. Compute the triple integral∫∫∫

B
(x+ y + z) dxdydz.

Since the limits of integration are constant we can perform the three integrals in any order.
We will integrate over x, y, z in that order:∫ 3

0

(∫ 2

0

(∫ 1

0
(x+ y + z) dx

)
dy

)
dz

2https://www.desmos.com/3d/1bcc69ab04

https://www.desmos.com/3d/1bcc69ab04


=

∫ 3

0

(∫ 2

0

[
x2

2
+ xy + xz

]x=1

x=0

dy

)
dz

=

∫ 3

0

(∫ 2

0

(
1

2
+ y + z

)
dy

)
dz

=

∫ 3

0

[
1

2
y +

y2

2
+ yz

]y=2

y=0

dz

=

∫ 3

0
(3 + 2z) dz

=
[
3z + z2

]z=3

z=0

= 18.

I don’t have anything interesting to say about this.

Problem 5. Cylindrical Coordinates. Consider a solid cone of radius 1 and height 1
whose base is the unit disk x2 + y2 ≤ 1 in the x, y-plane and whose vertex is at the point
(0, 0, 1) in x, y, z-space.

(a) Parametrize the cone using cylindrical coordinates: r, θ, z.
(b) Compute the volume of the cone.
(c) Compute the center of mass (x̄, ȳ, z̄), assuming that the cone has constant density 1.

[Hint: By symmetry we know that x̄ = 0 and ȳ = 0, so you only have to compute z̄.]

(a): We can parametrize the base circle by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Then for an arbitrary
point in the base circle with coordinates r, θ we must determine the maximum value of the
z-coordinate:3

3https://www.desmos.com/3d/fe66f06a6f

https://www.desmos.com/3d/fe66f06a6f


Since the cone is rotationally symmetric about the z-axis, the maximum value of z doesn’t
depend on θ. To examine the relationship between z and r, consider a vertical slice through
the origin:

Note that the surface of the cone intersects this slice in the straight line z = 1− r. Hence we
should take 0 ≤ z ≤ 1− r.

(b): Now we can use cylindrical coordinates to compute the volume of the cone:

Vol(Cone) =

∫∫∫
Cone

1 dxdydz

=

∫∫∫
Cone

r drdθdz (dxdydz = rdrdθdz)

=

∫ 2π

0
1 dθ ·

∫ 1

0
r ·
(∫ 1−r

0
1 dz

)
dr (must integrate z before r)

=

∫ 2π

0
1 dθ ·

∫ 1

0
r · (1− r) dr

=

∫ 2π

0
1 dθ ·

∫ 1

0
(r − r2) dr

=

∫ 2π

0
1 dθ ·

[
r2

2
− r3

3

]1
0

= 2π ·
(

1

2
− 1

3

)
=
π

3
.

Remark: The volume of a cone of radius r and height h is πr2h/3. When r = 1 and h = 1
this formula gives π/3, which agrees with our computation.

(c): By symmety we must have x̄ = 0 and ȳ = 0. The z coordinate of the center of mass is

z̄ =

∫∫∫
Cone

z dxdydz
/ ∫∫∫

Cone
1 dxdydz



=
3

π
·
∫∫∫

Cone
zr drdθdz

=
3

π
·
∫ 2π

0
1 dθ ·

∫ 1

0
r ·
(∫ 1−r

0
z dz

)
dr (must integrate z before r)

=
3

π
·
∫ 2π

0
1 dθ ·

∫ 1

0
r · (1− r)2/2 dr

=
3

2π
·
∫ 2π

0
1 dθ ·

∫ 1

0
(r3 − 2r2 + r) dr

=
3

π
·
∫ 2π

0
1 dθ ·

[
r4

4
− 2

r3

3
+
r2

2

]1
0

=
3

2π
· 2π ·

(
1

4
− 2

3
+

1

2

)
=

3

2π
· 2π · 1

12

=
1

4
.

Hence the center of mass is (0, 0, 1/4). Remark: We would get the same result for a cone of
any radius and height. The center of mass is always exactly 1/4 of the way from the center of
the base to the apex.

Problem 6. Spherical Coordinates. Consider the “ice-cream-cone-shaped” solid region
E that is between the sphere x2 + y2 + z2 = 1 and the cone z2 = x2 + y2, and satisfies z ≥ 0.
The volume is given by the triple integral:

Vol(E) =

∫∫∫
E

1 dxdydz.

Compute this integral by converting to spherical coordinates.

Here is a picture of the ice-cream cone, produced with Desmos:4

4https://www.desmos.com/3d/8f0a6ad917

https://www.desmos.com/3d/8f0a6ad917


This region is parametrized by 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π/4. (Note that the
boundary of the cone has slope 1, hence angle π/4 from the vertical. One can see this by
intersecting the cone z2 = x2 + y2 with any vertical plane, such as y = 0, to get z2 = x2, and
hence z = ±x. This is a pair of lines of slope ±1 in the x, z-plane.) Hence the volume is

Vol(E) =

∫∫∫
E

1 dxdydz

=

∫∫∫
E
ρ2 sinϕdrdθdz (dxdydz = ρ2 sinϕdρdθdϕ)

=

∫ 1

0
ρ2 dρ ·

∫ 2π

0
1 dθ ·

∫ π/4

0
sinϕdϕ (separable)

=

[
ρ3

3

]1
0

· [θ]2π0 · [− cosϕ]
π/4
0

=

(
1

3

)
(2π) (− cos(π/4) + cos(0))

=
2π

3

(
−
√

2

2
+ 1

)

=
2π

3
· 2−

√
2

2

=
2π(2−

√
2)

6
≈ 0.6.

Remark: I know that the most difficult part of this material is the visualization and parametriza-
tion of regions in R3. I strongly encourage you to use visualization tools such as Desmos and
GeoGebra to build intuition:

https://www.desmos.com/3d

https://www.geogebra.org/3d

https://www.desmos.com/3d
https://www.geogebra.org/3d

