Problem 1. An Integral in the Plane. Consider the function f(x, y) = x. Let D be the region that is inside the circle $x^2 + y^2 = 4$, above the line y = 0 and below the line y = x.

- (a) Draw the region. [Hint: It looks like 1/8 of a pie.]
- (b) Compute the integral $\iint_D f(x, y) dxdy$ by converting to polar coordinates.
- (c) Compute the integral $\iint_D f(x, y) dxdy$ in Cartesian coordinates by cutting the region D into two pieces D_1 and D_2 separated by the line $x = \sqrt{2}$. Check that you answers from parts (a) and (b) are the same.

Problem 2. Center of Mass. Let D be the same region as in Problem 1. Think of this as a thin metal plate with a constant density of 1 unit of mass per unit of area. Compute the following using polar coordinates.

- (a) Compute the total mass $\iint_D 1 \, dx \, dy$.
- (b) Compute the moment about the y axis: $\iint_D x \, dx \, dy$.
- (c) Compute the moment about the x axis: $\iint_D y \, dx dy$.
- (d) Find the center of mass.

Problem 3. Change of Coordinates. Consider the function $f(x, y) = x^2 + y^2$. Let D be the square-shaped region in the x, y-plane bounded by the four lines $x + y = \pm 2$ and $x - y = \pm 2$.

- (a) Draw the region.
- (b) Consider the change of variables x = u + v and y = u v. Compute the area stretch factor (i.e., the absolute value of the determinant of the Jacobian matrix.)
- (c) Compute the integral $\iint_D (x^2 + y^2) dx dy$ by converting to u, v-coordinates. [Hint: The region D in the u, v-plane is parametrized by $-1 \le u \le 1$ and $-1 \le v \le 1$.]

Problem 4. Integration Over a Rectangular Box. Let *B* be the rectangular box parametrized by $0 \le x \le 1$, $0 \le y \le 2$ and $0 \le z \le 3$. Compute the triple integral

$$\iiint_B (x+y+z) \, dx dy dz.$$

Problem 5. Cylindrical Coordinates. Consider a solid cone of radius 1 and height 1 whose base is the unit disk $x^2 + y^2 \leq 1$ in the *x*, *y*-plane and whose vertex is at the point (0, 0, 1) in *x*, *y*, *z*-space.

- (a) Parametrize the cone using cylindrical coordinates: r, θ, z .
- (b) Compute the volume of the cone.
- (c) Compute the center of mass $(\bar{x}, \bar{y}, \bar{z})$, assuming that the cone has constant density 1. [Hint: By symmetry we know that $\bar{x} = 0$ and $\bar{y} = 0$, so you only have to compute \bar{z} .]

Problem 6. Spherical Coordinates. Consider the "ice-cream-cone-shaped" solid region E that is between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z^2 = x^2 + y^2$, and satisfies $z \ge 0$. The volume is given by the triple integral:

$$\operatorname{Vol}(E) = \iiint_E 1 \, dx dy dz.$$

Compute this integral by converting to spherical coordinates.