Problem 1. An Integral in the Plane. Consider the function $f(x, y)=x$. Let D be the region that is inside the circle $x^{2}+y^{2}=4$, above the line $y=0$ and below the line $y=x$.
(a) Draw the region. [Hint: It looks like $1 / 8$ of a pie.]
(b) Compute the integral $\iint_{D} f(x, y) d x d y$ by converting to polar coordinates.
(c) Compute the integral $\iint_{D} f(x, y) d x d y$ in Cartesian coordinates by cutting the region D into two pieces D_{1} and D_{2} separated by the line $x=\sqrt{2}$. Check that you answers from parts (a) and (b) are the same.

Problem 2. Center of Mass. Let D be the same region as in Problem 1. Think of this as a thin metal plate with a constant density of 1 unit of mass per unit of area. Compute the following using polar coordinates.
(a) Compute the total mass $\iint_{D} 1 d x d y$.
(b) Compute the moment about the y axis: $\iint_{D} x d x d y$.
(c) Compute the moment about the x axis: $\iint_{D} y d x d y$.
(d) Find the center of mass.

Problem 3. Change of Coordinates. Consider the function $f(x, y)=x^{2}+y^{2}$. Let D be the square-shaped region in the x, y-plane bounded by the four lines $x+y= \pm 2$ and $x-y= \pm 2$.
(a) Draw the region.
(b) Consider the change of variables $x=u+v$ and $y=u-v$. Compute the area stretch factor (i.e., the absolute value of the determinant of the Jacobian matrix.)
(c) Compute the integral $\iint_{D}\left(x^{2}+y^{2}\right) d x d y$ by converting to u, v-coordinates. [Hint: The region D in the u, v-plane is parametrized by $-1 \leq u \leq 1$ and $-1 \leq v \leq 1$.]

Problem 4. Integration Over a Rectangular Box. Let B be the rectangular box parametrized by $0 \leq x \leq 1,0 \leq y \leq 2$ and $0 \leq z \leq 3$. Compute the triple integral

$$
\iiint_{B}(x+y+z) d x d y d z
$$

Problem 5. Cylindrical Coordinates. Consider a solid cone of radius 1 and height 1 whose base is the unit disk $x^{2}+y^{2} \leq 1$ in the x, y-plane and whose vertex is at the point $(0,0,1)$ in x, y, z-space.
(a) Parametrize the cone using cylindrical coordinates: r, θ, z.
(b) Compute the volume of the cone.
(c) Compute the center of mass $(\bar{x}, \bar{y}, \bar{z})$, assuming that the cone has constant density 1 . [Hint: By symmetry we know that $\bar{x}=0$ and $\bar{y}=0$, so you only have to compute \bar{z}.]

Problem 6. Spherical Coordinates. Consider the "ice-cream-cone-shaped" solid region E that is between the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z^{2}=x^{2}+y^{2}$, and satisfies $z \geq 0$. The volume is given by the triple integral:

$$
\operatorname{Vol}(E)=\iiint_{E} 1 d x d y d z
$$

Compute this integral by converting to spherical coordinates.

