
Math 310 Fall 2023
Homework 3 Drew Armstrong

Problem 1. Tangent Line to an Ellipse. Let a, b > 0 and consider the ellilpse

ax2 + by2 = 1.

(a) Let (x0, y0) be any point satisfying ax20 + by20 = 1. Show that the tangent line to the
ellipse at the point (x0, y0) has the equation

ax0x + by0y = 1.

[Hint: Think of the ellipse as the level curve f(x, y) = 1 where f(x, y) = ax2 + by2.]
(b) Draw the ellipse and tangent line when a = 1, b = 3 and (x0, y0) = (1/2, 1/2).

(a): Consider the function f(x, y) = ax2+by2 with gradient vector field ∇f(x, y) = 〈2ax, 2by〉.
Let (x0, y0) be any point on the level curve f(x, y) = 1, so that ax20 + by20 = 1. Then the
equation of the tangent line to the level curve f(x, y) = 1 at the point (x0, y0) is

∇f(x0, y0) • 〈x− x0, y − y0〉 = 0

〈2ax0, 2by0〉 • 〈x− x0, y − y0〉 = 0

2ax0(x− x0) + 2by0(y − y0) = 0

2ax0x− 2ax20 + 2by0y − 2by20 = 0

2ax0x + 2by0y = 2ax20 + 2by20

ax0x + by0y = ax20 + by20
ax0x + by0y = 1.

(b): We consider the case when a = 1, b = 3 and (x0, y0) = (1/2, 1/2). From part (a) we know
that the equation of the tangent line to the ellipse 1x2 + 3y2 = 1 at the point (1/2, 1/2) is

ax0x + by0y = 1

1(1/2)x + 3(1/2)y = 1

3y/2 = −x/2 + 1

y = −x/3 + 2/3.

Here is a picture:



Problem 2. Tangent Plane to a Surface. Consider the scalar field f(x, y, z) = xyez.

(a) Compute the gradient vector field ∇f(x, y, z).
(b) Use your answer from part (a) to find the equation of the tangent plane to the level

surface f(x, y, z) = 2 at the point (x0, y0, z0) = (2, 1, 0).

(a): The function f(x, y, z) = xyez has gradient vector field

∇f(x, y, z) =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈yez, xez, xyez〉 .

(b): If f(x0, y0, z0) = c then the tangent plane to the level curve f(x, y, z) = c at the point
(x0, y0, z0) has the equation

∇f(x0, y0, z0) • 〈x− x0, y − y0, z − z0〉 = 0

∂f

∂x
(x0, y0, z0)(x− x0) +

∂f

∂y
(x0, y0, z0)(y − y0) +

∂f

∂z
(x0, y0, z0)(z − z0) = 0

y0e
z0(x− x0) + x0e

z0(y − y0) + x0y0e
z0 = 0.

Putting (x0, y0, z0) = (2, 1, 0) gives equation

1e0(x− 2) + 2e0(y − 1) + 2 · 1 · e0(z − 0) = 0

(x− 2) + 2(y − 1) + 2(z − 0) = 0

x− 2 + 2y − 2 + 2z = 0

x + 2y + 2z = 4.

GeoGebra doesn’t like to plot implicit surfaces so I used a program called Maple to draw this:

Problem 3. Gradient Flow. The concentration of algae in a shallow pond is given by

A(x, y) = x2 + 3y2.

A certain fish always swims in the direction of maximum increase of algae. If r(t) is
the position of the fish at time t, this means that the velocity r′(t) and the gradient vector
∇A(r(t)) must always be parallel.

(a) Show that the path r(t) = (e2t, e6t) has this property.
(b) Show that the path r(t) = (t, t3) also has this property.



(a): The gradient vector field is ∇A(x, y) = 〈2x, 6y〉. If the fish travels along the trajectory
r(t) = (e2t, e6t) then the fish’s velocity vector at time t is r′(t) = 〈2e2t, 6e6t〉. On the other
hand, the algae gradient at the fish’s position is

∇A(r(t)) = ∇A(e2t, e6t) = 〈2e2t, 6e6t〉.

We note that r′(t) and ∇A(r(t)) are equal, hence they are certainly parallel.

(b): This time we consider the trajectory r(t) = (t, t3) with velocity r′(t) = 〈1, 3t2〉. The algae
gradient at the fish’s position is

∇A(r(t)) = ∇A(t, t3) = 〈2t, 6t3〉.

This vector is not exactly equal to the fish’s velocity, but it is still parallel because

∇A(r(t)) = 〈2t, 6t3〉 = 2t〈1, 3t2〉 = 2tr′(t).

If t > 0 then 2t is a positive scalar so the vectors ∇A(r(t)) and r′(t) are always parallel.

Remark: Both of the trajectories 〈x(t), y(t)〉 = 〈e2t, e6t〉 and 〈x(t), y(t)〉 = 〈t, t3〉 satisfy x(t)3 =
y(t) for all t, hence they travel within the curve y = x3. This curve (in red) is perpendicular
to every level curve of the function A(x, y) (in blue):

Problem 4. Differentials. Let `, w, h be the length, width and height of a box with an
open top. The volume and surface area of the box are

V (`, w, h) = `wh,

A(`, w, h) = `w + 2`h + 2wh.

(a) Use the multivariable chain rule to express the differentials dV and dA in terms of the
values of w, `, h and the differentials dw, d`, dh.

(b) Suppose that you measure `, w, h to be 10, 11, 12 cm, respectively, each with a maximum
error of 0.1 cm. Use your answer from (a) to find the approximate error in the
computed values of V and A. [Hint: Substitute 0.1 for dw, d` and dh.]



(a): The differential of the function V (`, w, h) = `wh is

dV =
∂V

∂`
d` +

∂V

∂w
dw +

∂V

∂h
dh = whd` + `hdw + `wdh.

The differential of the function A(`, w, h) = `w + 2`h + 2wh is

dA =
∂A

∂`
d` +

∂A

∂w
dw +

∂A

∂h
dh = (w + 2h)d` + (` + 2h)dw + (2` + 2w)dh.

(b): Suppose we measure ` = 10, w = 11 and h = 12 cm with uncertainties dw = d` = dh =
0.1. Then the computed volume is V = (10)(11)(12) = 1320 cm3 with uncertainty

dV = (11)(12)(0.1) + (10)(12)(0.1) + (10)(11)(0.1) = 36.2 cm3

and the computed area is A = (10)(11) + 2(10)(12) + 2(11)(12) = 614 cm2 with uncertainty

dA = [(11) + 2(12)](0.1) + [(11) + 2(12)](0.1) + [2(10)(12) + 2(11)(12)](0.1) = 11.1 cm2.

Remark: We introduced the differential notation (dV) in this section because we will use it
later when discussing multivariable integrals. The error estimates that we just computed are
more correctly seen as linear approximations. For example, if `0, w0, h0 are the measured
values of `, w, h and V0 = `0w0h0 is the computed value of V , then linear approximation says

V − V0 ≈ w0h0(`− `0) + `0h0(w − w0) + w0`0(h− h0)

∆V ≈ w0h0∆` + `0h0∆w + w0`0∆h.

It’s just a slightly different notation. (There are too many notations.)

Problem 5. Multivariable Optimization. Consider the scalar field f(x, y) = x3+xy−y3.

(a) Compute the gradient vector field ∇f(x, y).
(b) Find all the critical points of f , i.e., points (a, b) such that ∇f(a, b) = 〈0, 0〉.
(c) Compute the Hessian determinant det(Hf).
(d) Use the “second derivative test” to determine whether each critical point from part (b)

is a local maximum, local minimum or a saddle point.

(a): The gradient vector field of the scalar field f(x, y) = x3 + xy − y3 is

∇f = 〈fx, fy〉 = 〈3x2 + y, x− 3y2〉.

(b): The critical points satisfy ∇f = 〈0, 0〉, which is a system of two nonlinear equations in
two unknowns: {

3x2 + y = 0,
x− 3y2 = 0.

Nonlinear systems cannot generally be solved by hand, but this one can because I chose it
carefully. We can write the first equation as y = −3x2 and then substitute this into the second
equation:

x− 3y2 = 0

x− 3(−3x2)2 = 0

x− 27x4 = 0

x(1− 27x3) = 0.



This implies that x = 0 or 1 − 27x3 = 0, hence x3 = 1/27. The number 1/27 has a unique
real cube root 1/3. Hence we conclude that x = 0 or x = 1/3. Since y = −3x2, we obtain two
critical points:

(0, 0) and (1/3,−1/3).

(c): The Hessian matrix is

Hf =

(
fxx fxy
fyx fyy

)
=

(
6x 1
1 −6y

)
.

The Hessian determinant is

det(Hf) = (6x)(−6y)− (1)(1) = −36xy − 1.

(d): The critical point (0, 0) has

det(Hf)(0, 0) = −36(0)(0)− 1 = −1 < 0,

so it is a saddle. The critical point (1/3,−1/3) has

det(Hf)(1/3,−1/3) = −36(1/3)(−1/3)− 1 = 4− 1 = 3 > 0,

so it is local maximum or minimum. To tell the difference we observe that

fxx(1/3,−1/3) = 6(1/3) = 2 > 0,

so (1/3,−1/3) is a local minimum. Here is a picture produced by GeoGebra:

Problem 6. Least Squares Regression. Suppose we have n points in the plane:

(x1, y1), (x2, y2), . . . (xn, yn).

We would like to find the line y = mx + b that is “closest” to these points. The standard
approach is to find values of m and b so the following “sum of squared errors” is minimized:

E(m, b) = (y1 −mx1 − b)2 + (y2 −mx2 − b)2 + · · ·+ (yn −mxn − b)2.

(a) Show that the equation ∂E/∂b = 0 implies

m
∑

xi + nb =
∑

yi.



(b) Show that the equation ∂E/∂m = 0 implies

m
∑

x2i + b
∑

xi =
∑

xiyi.

(c) Solve these equations to find m and b when the given points are as follows:

(0, 1), (1, 2), (2, 2), (3, 3).

Draw a picture of the points and the best fit line.

(a): We compute the partial derivative of E with respect to b:

E =
∑

(yi −mxi − b)2

∂E/∂b = ∂
∂b

∑
(yi −mxi − b)2

=
∑

∂
∂b(yi −mxi − b)2

=
∑

2(yi −mxi − b)(−1)

=
∑

(−2yi + 2mxi + 2b)

= −2
∑

yi + 2m
∑

xi + 2b
∑

1

= −2
∑

yi + 2m
∑

xi + 2bn.

(Note that the sum of 1 over i = 1, . . . , n is 1 + 1 + · · ·+ 1 = n.) Setting ∂E/∂b = 0 gives

−2
∑

yi + 2m
∑

xi + 2bn = 0

−
∑

yi + m
∑

xi + bn = 0

m
∑

xi + bn =
∑

yi.

(b): We compute the partial derivative of E with respect to m:

E =
∑

(yi −mxi − b)2

∂E/∂m = ∂
∂m

∑
(yi −mxi − b)2

=
∑

∂
∂m(yi −mxi − b)2

=
∑

2(yi −mxi − b)(−xi)

=
∑

(−2xiyi + 2mx2i + 2bxi)

= −2
∑

xiyi + 2m
∑

x2i + 2b
∑

xi.

Setting ∂E/∂m = 0 gives

−2
∑

xiyi + 2m
∑

x2i + 2b
∑

xi = 0

−
∑

xiyi + m
∑

x2i + b
∑

xi = 0

m
∑

x2i + b
∑

xi =
∑

xiyi.

(c): We want to find the line y = mx + b that is “closest” to the n = 4 points

(x1, y1) = (0, 1),

(x2, y2) = (1, 2),



(x3, y3) = (2, 2),

(x4, y4) = (3, 3).

From these points we compute ∑
xi = 0 + 1 + 2 + 3 = 6,∑
x2i = 0 + 1 + 4 + 9 = 14,∑

xiyi = 0 + 2 + 4 + 9 = 15,∑
yi = 1 + 2 + 2 + 3 = 8.

Hence from parts (a) and (b) the unknown slope and y-intercept m, b satisfy the following
system of two linear equations, which are called the “normal equations”:{

6m + 4b = 8
14m + 6b = 15.

The solution is m = 3/5 and b = 11/10 (I was tired so I used a computer), hence the best fit
line is y = (3/5)x + (11/10). Here is a picture:

I can tell that the calculations were correct because the picture looks good, i.e., the line looks
like a “good fit” for the four data points.

Remark: With more work, one could check that det(HE)(3/5, 11/10) > 0 and Emm(3/5, 11/10) >
0, to verify that this really is a minimum. But of course it is. In most practical applications
there is no need to use the second derivative test.


