Problem 1. Tangent Line to an Ellipse. Let $a, b>0$ and consider the ellilpse

$$
a x^{2}+b y^{2}=1
$$

(a) Let $\left(x_{0}, y_{0}\right)$ be any point satisfying $a x_{0}^{2}+b y_{0}^{2}=1$. Show that the tangent line to the ellipse at the point $\left(x_{0}, y_{0}\right)$ has the equation

$$
a x_{0} x+b y_{0} y=1 .
$$

[Hint: Think of the ellipse as the level curve $f(x, y)=1$ where $f(x, y)=a x^{2}+b y^{2}$.]
(b) Draw the ellipse and tangent line when $a=1, b=3$ and $\left(x_{0}, y_{0}\right)=(1 / 2,1 / 2)$.

Problem 2. Tangent Plane to a Surface. Consider the scalar field $f(x, y, z)=x y e^{z}$.
(a) Compute the gradient vector field $\nabla f(x, y, z)$.
(b) Use your answer from part (a) to find the equation of the tangent plane to the level surface $f(x, y, z)=2$ at the point $\left(x_{0}, y_{0}, z_{0}\right)=(2,1,0)$.

Problem 3. Gradient Flow. The concentration of algae in a shallow pond is given by

$$
A(x, y)=x^{2}+3 y^{2} .
$$

A certain fish always swims in the direction of maximum increase of algae. If $\mathbf{r}(t)$ is the position of the fish at time t, this means that the velocity $\mathbf{r}^{\prime}(t)$ and the gradient vector $\nabla A(\mathbf{r}(t))$ must always be parallel.
(a) Show that the path $\mathbf{r}(t)=\left(e^{2 t}, e^{6 t}\right)$ has this property.
(b) Show that the path $\mathbf{r}(t)=\left(t, t^{3}\right)$ also has this property.

Problem 4. Differentials. Let ℓ, w, h be the length, width and height of a box with an open top. The volume and surface area of the box are

$$
\begin{aligned}
& V(\ell, w, h)=\ell w h, \\
& A(\ell, w, h)=\ell w+2 \ell h+2 w h .
\end{aligned}
$$

(a) Use the multivariable chain rule to express the differentials $d V$ and $d A$ in terms of the values of w, ℓ, h and the differentials $d w, d \ell, d h$.
(b) Suppose that you measure ℓ, w, h to be $10,11,12 \mathrm{~cm}$, respectively, each with a maximum error of 0.1 cm . Use your answer from (a) to find the approximate error in the computed values of V and A. [Hint: Substitute 0.1 for $d w, d \ell$ and $d h$.]

Problem 5. Multivariable Optimization. Consider the scalar field $f(x, y)=x^{3}+x y-y^{3}$.
(a) Compute the gradient vector field $\nabla f(x, y)$.
(b) Find all the critical points of f, i.e., points (a, b) such that $\nabla f(a, b)=\langle 0,0\rangle$.
(c) Compute the Hessian determinant $\operatorname{det}(H f)$.
(d) Use the "second derivative test" to determine whether each critical point from part (b) is a local maximum, local minimum or a saddle point.

Problem 6. Least Squares Regrssion. Suppose we have n points in the plane:

$$
\left(x_{1}, y_{1}\right), \quad\left(x_{2}, y_{2}\right), \quad \ldots \quad\left(x_{n}, y_{n}\right) .
$$

We would like to find the line $y=m x+b$ that is "closest" to these points. The standard approach is to find values of m and b so the following "sum of squared errors" is minimized:

$$
E(m, b)=\left(y_{1}-m x_{1}-b\right)^{2}+\left(y_{2}-m x_{2}-b\right)^{2}+\cdots+\left(y_{n}-m x_{n}-b\right)^{2} .
$$

(a) Show that the equation $\partial E / \partial b=0$ implies

$$
m \sum x_{i}+n b=\sum y_{i}
$$

(b) Show that the equation $\partial E / \partial m=0$ implies

$$
m \sum x_{i}^{2}+b \sum x_{i}=\sum x_{i} y_{i} .
$$

(c) Solve these equations to find m and b when the given points are as follows:

$$
(0,1), \quad(1,2), \quad(2,2), \quad(3,3) .
$$

Draw a picture of the points and the best fit line.

