Problem 1. A Line in Space. Consider the line in $\mathbb{R}^{3}$ passing through the two points

$$
P=(-1,3,2) \quad \text { and } \quad Q=(2,5,1) .
$$

(a) Express this line in parametric form $\mathbf{r}(t)=\left(x_{0}+t a, y_{0}+t b, z_{0}+t c\right)$.
(b) Find the equations of two planes in $\mathbb{R}^{3}$ whose intersection is this line. [Hint: There are infinitely many solutions. One solution uses the symmetric equations.]
(a): We can take $\left(x_{0}, y_{0}, z_{0}\right)=P=(-1,3,2)$ and $\langle a, b, c\rangle=\overrightarrow{P Q}=Q-P=\langle 3,2,-1\rangle$ to get

$$
\mathbf{r}(t)=(-1+3 t, 3+2 t, 2-t) .
$$

Here is a picture:

(b): A general point on the line satisfies $(x, y, z)=(-1+3 t, 3+2 t, 2-t)$ for some $t$. We can eliminate $t$ to obtain the "symmetric equations" of the line:

$$
t=\frac{x+1}{3}=\frac{y-3}{2}=\frac{z-2}{-1} .
$$

These equations tells us the line is the intersection of three planes:

$$
\frac{x+1}{3}=\frac{y-3}{2} \quad \text { and } \quad \frac{x+1}{3}=\frac{z-2}{-1} \quad \text { and } \quad \frac{y-3}{2}=\frac{z-2}{-1} .
$$

Here is a picture:


Actually, the third plane is redundant so we can pick any two of these planes. [More generally we can just pick any two planes that contain the line. There are infinitely many valid choices.]

Problem 2. A Plane in Space. Consider the plane in $\mathbb{R}^{3}$ passing through the three points

$$
P=(-1,3,2), \quad Q=(2,5,1), \quad R=(0,2,4)
$$

(a) Find a vector that is perpendicular to this plane.
(b) Find the equation of the plane.
(a): We can find a normal vector by taking the cross product of any two vectors in the plane. For example, we can take $\overrightarrow{P R}=R-P=\langle 1,-1,2\rangle$ and $\overrightarrow{P Q}=Q-P=\langle 3,2,-1\rangle$ to get

$$
\begin{aligned}
\overrightarrow{P R} \times \overrightarrow{P Q} & =\langle 1,-1,2\rangle \times\langle 3,2,-1\rangle \\
& =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 2 \\
3 & 2 & -1
\end{array}\right) \\
& =\mathbf{i} \operatorname{det}\left(\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right)-\mathbf{j} \operatorname{det}\left(\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right)+\mathbf{k} \operatorname{det}\left(\begin{array}{cc}
1 & -1 \\
3 & 2
\end{array}\right) \\
& =\mathbf{i}(1-4)-\mathbf{j}(-1-6)+\mathbf{k}(2+3) \\
& =-3 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k} \\
& =\langle-3,7,5\rangle
\end{aligned}
$$

(b): The plane that contains the point $\left(x_{0}, y_{0}, z_{0}\right)$ and is perpendicular to the vector $\langle a, b, c\rangle$ has the equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

In our case we can take $\left(x_{0}, y_{0}, z_{0}\right)=P=(-1,3,2)$ and $\langle a, b, c\rangle=\langle-3,7,5\rangle$ to get

$$
\begin{aligned}
-3(x+1)+7(y-3)+5(z-2) & =0 \\
-3 x+7 y+5 z-3-21-10 & =0 \\
-3 x+7 y+5 z & =34
\end{aligned}
$$

Finally, let's check that this plane contains the three given points:

$$
\begin{aligned}
-3(-1)+7(3)+5(2) & =3+21+10=34 \\
-3(2)+7(5)+5(1) & =-6+35+5=34 \\
-3(0)+7(2)+5(4) & =0+14+20=34
\end{aligned}
$$

It works. Here is a picture:


Problem 3. Intersection of Two Planes. Consider the following two planes in $\mathbb{R}^{3}$ :
(1) $\left\{\begin{array}{l}x+y+2 z=1, \\ x-y+z=3 .\end{array}\right.$
(a) Express the intersection of these planes as a parametrized line. [Hint: Subtract the equations to obtain a new equation without $x$. Then let $t=z$ be a parameter and solve for $x$ and $y$ in terms of $t$.]
(b) We observe that $\mathbf{u}=\langle 1,1,2\rangle$ and $\mathbf{v}=\langle 1,-1,1\rangle$ are normal vectors for the two planes. Compute the cross product $\mathbf{u} \times \mathbf{v}$. How is this vector related to the line in part (a)?
(a): We subtract (2) from (1) to obtain a new equation (3) that does not involve $x$ :

$$
(3)=(1)-(2): 0+2 y+z=-2 .
$$

Now subtract (3) from 2(1) to obtain a new equation (4) that does not involve $y$ :

$$
(4)=2(1)-(3): 2 x+0+3 z=4 \text {. }
$$

Thus we have solved for $x$ and $y$ in terms of $z$ :

$$
\begin{aligned}
& x=2-(3 / 2) z \\
& y=-1-(1 / 2) z .
\end{aligned}
$$

If we let $t=z$ be a parameter then we obtain a parametrized line:

$$
\left\{\begin{array}{l}
x=2-(3 / 2) t \\
y=-1-(1 / 2) t \\
z=t
\end{array}\right.
$$

which can also be expressed as

$$
\begin{aligned}
\mathbf{r}(t) & =\langle x(t), y(t), z(t)\rangle \\
& =\langle 2-(3 / 2) t,-1-(1 / 2) t, t\rangle \\
& =\langle 2,-1,0\rangle+t\langle-3 / 2,-1 / 2,1\rangle .
\end{aligned}
$$

(b): On the other hand, let's consider the normal vectors of the planes (1) and (2), which are

$$
\mathbf{u}=\langle 1,1,2\rangle \quad \text { and } \quad \mathbf{v}=\langle 1,-1,1\rangle .
$$

Their cross product is

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 2 \\
1 & -1 & 1
\end{array}\right) \\
& =\mathbf{i} \operatorname{det}\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)-\mathbf{j} \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)+\mathbf{k} \operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& =\mathbf{i}(1+2)-\mathbf{j}(1-2)+\mathbf{k}(-1-1) \\
& =3 \mathbf{i}+1 \mathbf{j}-2 \mathbf{k} \\
& =\langle 3,1,-2\rangle
\end{aligned}
$$

We observe that $\mathbf{u} \times \mathbf{v}$ is a scalar multiple of the velocity vector from part (a):

$$
\langle 3,1,-2\rangle=-2\langle-3 / 2,-1 / 2,1\rangle .
$$

In fact, we could have used the cross product to solve (a) in a different way. Here is a picture (the red and blue vectors are perpendicular to the red and blue planes, respectively):


Problem 4. Projectile Motion. A projectile is launched from the point $(0,0)$ in $\mathbb{R}^{2}$ with an initial speed of $s$, at an angle of $\theta$ above the horizontal. Thus we have

$$
\begin{aligned}
\mathbf{r}(0) & =\langle 0,0\rangle \\
\mathbf{r}^{\prime}(0) & =\langle s \cos \theta, s \sin \theta\rangle .
\end{aligned}
$$

Let $g>0$ be the constant of gravity (which is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ near the Earth).
(a) Use this information to compute the position $\mathbf{r}(t)$ at time $t$. [Hint: Neglecting air resistance, the acceleration due to gravity is constant: $\mathbf{r}^{\prime \prime}(t)=\langle 0,-g\rangle$.]
(b) Show that the particle travels a horizontal distance of $H=s^{2} \sin (2 \theta) / g$ before it hits the ground. [Hint: Use your answer $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ from part (a) and solve the equation $y(t)=0$ for $t$. You will need the trig identity $\sin (2 \theta)=2 \sin \theta \cos \theta$.]
(c) Find the value of $\theta$ that maximizes the horizontal distance traveled. [Hint: According to Calculus I, you should find the value of $\theta$ that makes $d H / d \theta=0$. Recall that $g$ and $s$ are constant.]
(a): Fix some constants $s, \theta>0$ and let the initial velocity be $\mathbf{r}^{\prime}(0)=\langle s \cos \theta, s \sin \theta\rangle$. Then the initial speed is

$$
\left\|\mathbf{r}^{\prime}(0)\right\|=\sqrt{s^{2} \cos ^{2} \theta+s^{2} \sin ^{2} \theta}=\sqrt{s^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\sqrt{s^{2}}=s .
$$

That is, instead of specifying the initial velocity by its Cartesian coordinates, we will use the magnitude and direction. This idea is called "polar coordinates":

$$
\vec{r}^{\prime}(t)=\langle s \cos \theta, s \sin \theta\rangle
$$


$s \cos \theta$

Our goal is to find explicit formulas for the position at time $t$. We begin by integrating $\mathbf{r}^{\prime \prime}(t)=\langle 0,-g\rangle$ to get $\mathbf{r}^{\prime}(t)$. Since $g$ is constant we have

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle\int 0 d t, \int-g d t\right\rangle \\
& =\left\langle c_{1},-g t+c_{2}\right\rangle
\end{aligned}
$$

for come constants of integration $c_{1}, c_{2}$. We use the initial velocity to see that

$$
\langle s \cos \theta, s \sin \theta\rangle=\mathbf{r}^{\prime}(0)=\left\langle c_{1}, 0+c_{2}\right\rangle=\left\langle c_{1}, c_{2}\right\rangle,
$$

and hence

$$
\mathbf{r}^{\prime}(t)=\langle s \cos \theta,-g t+s \sin \theta\rangle .
$$

Next we integrate $\mathbf{r}^{\prime}(t)$ to get $\mathbf{r}(t)$. Since $s, \theta$ and $g$ are constant we have

$$
\begin{aligned}
\mathbf{r}(t) & =\left\langle\int s \cos \theta d t, \int(-g t+s \cos \theta) d t\right\rangle \\
& =\left\langle(s \cos \theta) t+c_{3},-\frac{1}{2} g t^{2}+(s \sin \theta) t+c_{4}\right\rangle
\end{aligned}
$$

for some constants $c_{3}, c_{4}$. We use the initial position to see that

$$
\langle 0,0\rangle=\mathbf{r}(0)=\left\langle 0+c_{3}, 0+0+c_{4}\right\rangle=\left\langle c_{3}, c_{4}\right\rangle,
$$

and hence

$$
\mathbf{r}(t)=\left\langle(s \cos \theta) t,-\frac{1}{2} g t^{2}+(s \sin \theta) t\right\rangle .
$$

(b): We want to know when the projectile hits the ground. In other words, we want to solve

$$
\begin{aligned}
y(t) & =0 \\
-\frac{1}{2} g t^{2}+(s \sin \theta) t & =0 \\
t\left(-\frac{1}{2} g t+s \sin \theta\right) & =0
\end{aligned}
$$

We find that the projectile is on the ground at time $t=0$ (of course) and also when

$$
\begin{aligned}
-\frac{1}{2} g t+s \sin \theta & =0 \\
t & =\frac{2 s}{g} \sin \theta
\end{aligned}
$$

Now we want to know where the projectile hits the ground. Since it hits the ground at time $t=2 s \sin \theta / g$, the position when it hits the ground is ${ }^{1}$

$$
\begin{aligned}
\mathbf{r}\left(\frac{2 s}{g} \sin \theta\right) & =\left\langle s \cos \theta \frac{2 s}{g} \sin \theta, 0\right\rangle \\
& =\left\langle\frac{2 s^{2}}{g} \sin \theta \cos \theta, 0\right\rangle \\
& =\left\langle\frac{s^{2}}{g} \sin (2 \theta), 0\right\rangle
\end{aligned}
$$

Here is a picture:

[^0]

For which value of $\theta$ is the distance $s^{2} \sin (2 \theta) / g$ maximized? To solve this we will think of the distance as a function of $\theta$, with $s$ and $g$ fixed:

$$
f(\theta)=\frac{s^{2}}{g} \sin (2 \theta)
$$

Then to maximize $f(\theta)$ we take the derivative with respect to $\theta$ and set this equal to zero:

$$
\begin{aligned}
d f / d \theta & =0 \\
\frac{s^{2}}{g} \cos (2 \theta) \cdot 2 & =0 \\
\cos (2 \theta) & =0 .
\end{aligned}
$$

We conclude that $2 \theta=90^{\circ}$ and hence $\theta=45^{\circ}$. Summary: The horizontal distance of a cannonball is maximized by aiming the cannon at $45^{\circ}$ above the horizontal. This is true on any planet and for any initial speed.

Problem 5. Fun with the Product Rule. Recall the following "product rules" for vectorvalued functions $\mathbf{f}, \mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ :

$$
\begin{aligned}
{[\mathbf{f}(t) \bullet \mathbf{g}(t)]^{\prime} } & =\mathbf{f}^{\prime}(t) \bullet \mathbf{g}(t)+\mathbf{f}(t) \bullet \mathbf{g}^{\prime}(t), \\
{[\mathbf{f}(t) \times \mathbf{g}(t)]^{\prime} } & =\mathbf{f}^{\prime}(t) \times \mathbf{g}(t)+\mathbf{f}(t) \times \mathbf{g}^{\prime}(t) .
\end{aligned}
$$

(a) Let $\mathbf{r}(t)$ be the trajectory of a particle traveling on the surface of a sphere centered at $(0,0,0)$. In this case, show that $\mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t)=0$ for all $t$. [Hint: By assumption we have $\|\mathbf{r}(t)\|=c$ for some constant $c$ independent of $t$.]
(b) Let $\mathbf{r}(t)$ be the trajectory of a particle in space, and assume that $\mathbf{r}^{\prime \prime}(t)=c(t) \mathbf{r}(t)$ for some scalar function $c(t)$. In this case show that

$$
\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]^{\prime}=\langle 0,0,0\rangle \quad \text { for all } t
$$

[Hint: Recall that $\mathbf{v} \times \mathbf{v}=\langle 0,0,0\rangle$ for any vector $\mathbf{v}$.]
(a): If a particle travels on a sphere of radius $c$ centered at $(0,0,0)$ then we must have $\|\mathbf{r}(t)\|=c$ for all $t$. Since $\|\mathbf{r}(t)\|^{2}=\mathbf{r}(t) \bullet \mathbf{r}(t)$ we must also have

$$
\begin{aligned}
\|\mathbf{r}(t)\| & =c \\
\|\mathbf{r}(t)\|^{2} & =c^{2} \\
\mathbf{r}(t) \bullet \mathbf{r}(t) & =c^{2} .
\end{aligned}
$$

Now we take the derivative of both sides and apply the product rule:

$$
\begin{aligned}
{[\mathbf{r}(t) \bullet \mathbf{r}(t)]^{\prime} } & =\left[c^{2}\right]^{\prime} \\
\mathbf{r}^{\prime}(t) \bullet \mathbf{r}(t)+\mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t) & =0 \\
\mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t)+\mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t) & =0 \\
2 \mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t) & =0 \\
\mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t) & =0 .
\end{aligned}
$$

In other words, the velocity of the particle is always tangent to the sphere. Here is a picture:

(b): Let $\mathbf{r}(t)$ be the trajectory of a particle in $\mathbb{R}^{3}$ and assume that the acceleration and position vectors are in the same direction, i.e., that $\mathbf{r}^{\prime \prime}(t)=c(t) \mathbf{r}(t)$ for some scalar function $c(t)$. Then by using the product rule for the derivative of a cross product we find that

$$
\begin{aligned}
{\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]^{\prime} } & =\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime}(t)+\mathbf{r}(t) \times \mathbf{r}^{\prime \prime}(t) \\
& =\langle 0,0,0\rangle+\mathbf{r}(t) \times[c(t) \mathbf{r}(t)] \\
& =\langle 0,0,0\rangle+c(t)[\mathbf{r}(t) \times \mathbf{r}(t)] \\
& =\langle 0,0,0\rangle+c(t)\langle 0,0,0\rangle \\
& =\langle 0,0,0\rangle .
\end{aligned}
$$

This is a strange formula. We will explore its meaning in the next problem.
Problem 6. Universal Gravitation. Choose a coordinate system with the sun at the origin $(0,0,0)$ in $\mathbb{R}^{3}$. According to Newton, a planet at position $\mathbf{r}(t)$ feels a gravitational force $\mathbf{F}(t)$ pointed directly toward the sun, whose magnitude is

$$
\|\mathbf{F}(t)\|=\frac{G M m}{\|\mathbf{r}(t)\|^{2}}
$$

where $M$ is the mass of the sun, $m$ is the mass of the planet and $G$ is a constant of gravitation. For simplicity, let's assume that $G=M=m=1$.
(a) Show that $\mathbf{F}(t)=-G M m \mathbf{r}(t) /\|\mathbf{r}(t)\|^{3}$. It follows from Newton's Second Law that

$$
\mathbf{r}^{\prime \prime}(t)=-\frac{G M}{\|\mathbf{r}(t)\|^{3}} \mathbf{r}(t) .
$$

[Hint: Since $\mathbf{F}(t)$ points directly toward the sun we must have $\mathbf{F}(t)=-c(t) \mathbf{r}(t)$ for some positive scalar $c(t)$, and hence $\|\mathbf{F}(t)\|=c(t)\|\mathbf{r}(t)\|$. Solve for $c(t)$.]
(b) Conservation of Angular Momentum. Consider the angular momentum vector

$$
\mathbf{L}(t)=\mathbf{r}(t) \times \mathbf{r}^{\prime}(t) .
$$

Use part (a) and Problem $5(\mathrm{~b})$ to show that $\mathbf{L}^{\prime}(t)=\langle 0,0,0\rangle$ for all $t$. It follows that the angular momentum vector is constant.
(a): Since $\mathbf{F}(t)=-c(t) \mathbf{r}(t)$ for some positive scalar $c(t)>0$ we have

$$
\|\mathbf{F}(t)\|=\|-c(t) \mathbf{r}(t)\|=\mid-c(t)\|\mathbf{r}(t)\|=c(t)\|\mathbf{r}(t)\| .
$$

Then since $\|\mathbf{F}(t)\|=-G M m /\|\mathbf{r}(t)\|^{2}$ we have

$$
\begin{aligned}
\|\mathbf{F}(t)\| & =G M m /\|\mathbf{r}(t)\|^{2} \\
c(t)\|\mathbf{r}(t)\| & =G M m /\|\mathbf{r}(t)\|^{2} \\
c(t) & =G M m /\|\mathbf{r}(t)\|^{3} .
\end{aligned}
$$

Finally, Newton's second law gives

$$
\begin{aligned}
m \mathbf{r}^{\prime \prime}(t) & =\mathbf{F}(t) \\
m \mathbf{r}^{\prime \prime}(t) & =-c(t) \mathbf{r}(t) \\
m \mathbf{r}^{\prime \prime}(t) & =-\frac{G M m}{\|\mathbf{r}(t)\|^{3}} \mathbf{r}(t) \\
\mathbf{r}^{\prime \prime}(t) & =-\frac{G M}{\|\mathbf{r}(t)\|^{3}} \mathbf{r}(t) .
\end{aligned}
$$

(b): Now we consider the angular momentum vector ${ }^{2}$

$$
\mathbf{L}(t)=\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)
$$

From part (a) we know that $\mathbf{r}^{\prime \prime}(t)=c(t) \mathbf{r}(t)$ for some scalar $c(t)$, hence from Problem 5(b) we conclude that

$$
\mathbf{L}^{\prime}(t)=\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]^{\prime}=\langle 0,0,0\rangle .
$$

In other words, the angular momentum vector $\mathbf{L}$ is constant. Since $\mathbf{L}$ is always perpendicular to $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$, this tells us, in particular, that the planet always stays in the plane that is perpendicular to $\mathbf{L}$, called the ecliptic. Here is a picture:


[^1]For the Curious Only! (Everyone Else Please Ignore) If $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ then the vector differential equation

$$
\mathbf{r}^{\prime \prime}(t)=-\frac{G M}{\|\mathbf{r}(t)\|^{3}} \mathbf{r}(t)
$$

is equivalent to a system of three coupled nonlinear differential equations:

$$
\left\{\begin{aligned}
x^{\prime \prime}(t) & =-G M x(t) /\left[x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}\right]^{3 / 2}, \\
y^{\prime \prime}(t) & =-G M y(t) /\left[x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}\right]^{3 / 2}, \\
z^{\prime \prime}(t) & =-G M z(t) /\left[x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}\right]^{3 / 2}
\end{aligned}\right.
$$

One of Newton's great achievements was to show that these equations lead to the prediction of elliptic planetary orbits, which was earlier observed by Kepler without any explanation.

I will outline a modern proof of this using vector calculus. To simplify the formulas I will assume that $G=M=m=1$.

- We showed in $6(\mathrm{~b})$ that the angular velocity $\mathbf{L}=\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)$ is a constant vector.
- There is another conserved vector, called the Runge-Lenz vector:

$$
\mathbf{A}(t)=\mathbf{r}^{\prime}(t) \times \mathbf{L}-\mathbf{r}(t) /\|\mathbf{r}(t)\|
$$

One can check using identities for dot product and cross product that $\mathbf{A}^{\prime}(t)=\langle 0,0,0\rangle$, hence $\mathbf{A}(t)=\mathbf{A}$ is constant. This is related to conservation of energy.

- Since $\mathbf{r}^{\prime}(t) \times \mathbf{L}$ and $\mathbf{r}(t) /\|\mathbf{r}(t)\|$ are both perpendicular to $\mathbf{L}$, we see that $\mathbf{A}$ is perpendicular to $\mathbf{L}$. Thus we can choose a coordinate system so that $\mathbf{L}=\langle 0,0, \ell\rangle$ and $\mathbf{A}=\langle e, 0,0\rangle$ for some constants $e, \ell>0$. The number $e$ is some measure of energy.
- Since $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is perpendicular to $\mathbf{L}=\langle 0,0, \ell\rangle$ we must have $z(t)=0$ for all $t$. That is, the planet stays in the $x, y$-plane, which is called the "ecliptic".
- Our goal is to find formulas for $x(t)$ and $y(t)$. This is much easier if we switch to polar coordinates $r(t)$ and $\theta(t)$ where $x(t)=r(t) \cos [\theta(t)]$ and $y(t)=r(t) \sin [\theta(t)]$. Note in particular that that $r(t)=\sqrt{x(t)^{2}+y(t)^{2}}=\|\mathbf{r}(t)\|$. To save space we will write $r$ and $\theta$ instead of $r(t)$ and $\theta(t)$.
- By computing the expression $\mathbf{r}(t) \bullet\left(\mathbf{r}^{\prime}(t) \times \mathbf{L}\right)$ in two different ways (using various identities for dot product and cross product) one can show that

$$
r(1+e \cos \theta)=\mathbf{r}(t) \bullet\left(\mathbf{r}^{\prime}(t) \times \mathbf{L}\right)=\ell^{2}
$$

and hence

$$
r=\ell^{2} /(1+e \cos \theta) .
$$

This is the equation of a "conic section" in polar coordinates.

- The constant $e$ is called the "eccentricity" of the orbit. If $0<e<1$ then the orbit is an ellipse. If $e>1$ then the planet has enough energy to escape the solar system and the orbit is a hyperbola.


[^0]:    ${ }^{1}$ Here I use the trig identity $\sin (2 \theta)=2 \sin \theta \cos \theta$ to make the following computations simpler.

[^1]:    ${ }^{2}$ Sorry, the true angular momentum is $m \mathbf{L}(t)$ where $m$ is the mass of the planet.

