
Math 310 Fall 2023
Homework 2 Drew Armstrong

Problem 1. A Line in Space. Consider the line in R3 passing through the two points

P = (−1, 3, 2) and Q = (2, 5, 1).

(a) Express this line in parametric form r(t) = (x0 + ta, y0 + tb, z0 + tc).
(b) Find the equations of two planes in R3 whose intersection is this line. [Hint: There are

infinitely many solutions. One solution uses the symmetric equations.]

(a): We can take (x0, y0, z0) = P = (−1, 3, 2) and 〈a, b, c〉 = ~PQ = Q− P = 〈3, 2,−1〉 to get

r(t) = (−1 + 3t, 3 + 2t, 2− t).

Here is a picture:

(b): A general point on the line satisfies (x, y, z) = (−1 + 3t, 3 + 2t, 2− t) for some t. We can
eliminate t to obtain the “symmetric equations” of the line:

t =
x+ 1

3
=
y − 3

2
=
z − 2

−1
.

These equations tells us the line is the intersection of three planes:

x+ 1

3
=
y − 3

2
and

x+ 1

3
=
z − 2

−1
and

y − 3

2
=
z − 2

−1
.

Here is a picture:



Actually, the third plane is redundant so we can pick any two of these planes. [More generally
we can just pick any two planes that contain the line. There are infinitely many valid choices.]

Problem 2. A Plane in Space. Consider the plane in R3 passing through the three points

P = (−1, 3, 2), Q = (2, 5, 1), R = (0, 2, 4).

(a) Find a vector that is perpendicular to this plane.
(b) Find the equation of the plane.

(a): We can find a normal vector by taking the cross product of any two vectors in the plane.

For example, we can take ~PR = R− P = 〈1,−1, 2〉 and ~PQ = Q− P = 〈3, 2,−1〉 to get

~PR× ~PQ = 〈1,−1, 2〉 × 〈3, 2,−1〉

= det

i j k
1 −1 2
3 2 −1


= i det

(
−1 2
2 −1

)
− j det

(
1 2
3 −1

)
+ kdet

(
1 −1
3 2

)
= i(1− 4)− j(−1− 6) + k(2 + 3)

= −3i + 7j + 5k

= 〈−3, 7, 5〉.

(b): The plane that contains the point (x0, y0, z0) and is perpendicular to the vector 〈a, b, c〉
has the equation

a(x− x0) + b(y − y0) + c(z − z0) = 0.

In our case we can take (x0, y0, z0) = P = (−1, 3, 2) and 〈a, b, c〉 = 〈−3, 7, 5〉 to get

−3(x+ 1) + 7(y − 3) + 5(z − 2) = 0

−3x+ 7y + 5z − 3− 21− 10 = 0

−3x+ 7y + 5z = 34.

Finally, let’s check that this plane contains the three given points:

−3(−1) + 7(3) + 5(2) = 3 + 21 + 10 = 34,

−3(2) + 7(5) + 5(1) = −6 + 35 + 5 = 34,

−3(0) + 7(2) + 5(4) = 0 + 14 + 20 = 34.

It works. Here is a picture:



Problem 3. Intersection of Two Planes. Consider the following two planes in R3:

(1)
(2)

{
x + y + 2z = 1,
x − y + z = 3.

(a) Express the intersection of these planes as a parametrized line. [Hint: Subtract the
equations to obtain a new equation without x. Then let t = z be a parameter and
solve for x and y in terms of t.]

(b) We observe that u = 〈1, 1, 2〉 and v = 〈1,−1, 1〉 are normal vectors for the two planes.
Compute the cross product u× v. How is this vector related to the line in part (a)?

(a): We subtract (2) from (1) to obtain a new equation (3) that does not involve x:

(3) = (1)− (2) : 0 + 2y + z = −2.

Now subtract (3) from 2(1) to obtain a new equation (4) that does not involve y:

(4) = 2(1)− (3) : 2x+ 0 + 3z = 4.

Thus we have solved for x and y in terms of z:

x = 2− (3/2)z

y = −1− (1/2)z.

If we let t = z be a parameter then we obtain a parametrized line: x = 2− (3/2)t,
y = −1− (1/2)t,
z = t,

which can also be expressed as

r(t) = 〈x(t), y(t), z(t)〉
= 〈2− (3/2)t,−1− (1/2)t, t〉
= 〈2,−1, 0〉+ t〈−3/2,−1/2, 1〉.

(b): On the other hand, let’s consider the normal vectors of the planes (1) and (2), which are

u = 〈1, 1, 2〉 and v = 〈1,−1, 1〉.
Their cross product is

u× v = det

i j k
1 1 2
1 −1 1


= i det

(
1 2
−1 1

)
− j det

(
1 2
1 1

)
+ kdet

(
1 1
1 −1

)
= i(1 + 2)− j(1− 2) + k(−1− 1)

= 3i + 1j− 2k

= 〈3, 1,−2〉.

We observe that u× v is a scalar multiple of the velocity vector from part (a):

〈3, 1,−2〉 = −2〈−3/2,−1/2, 1〉.
In fact, we could have used the cross product to solve (a) in a different way. Here is a picture
(the red and blue vectors are perpendicular to the red and blue planes, respectively):



Problem 4. Projectile Motion. A projectile is launched from the point (0, 0) in R2 with
an initial speed of s, at an angle of θ above the horizontal. Thus we have

r(0) = 〈0, 0〉,
r′(0) = 〈s cos θ, s sin θ〉.

Let g > 0 be the constant of gravity (which is 9.81 m/s2 near the Earth).

(a) Use this information to compute the position r(t) at time t. [Hint: Neglecting air
resistance, the acceleration due to gravity is constant: r′′(t) = 〈0,−g〉.]

(b) Show that the particle travels a horizontal distance of H = s2 sin(2θ)/g before it hits
the ground. [Hint: Use your answer r(t) = 〈x(t), y(t)〉 from part (a) and solve the
equation y(t) = 0 for t. You will need the trig identity sin(2θ) = 2 sin θ cos θ.]

(c) Find the value of θ that maximizes the horizontal distance traveled. [Hint: According
to Calculus I, you should find the value of θ that makes dH/dθ = 0. Recall that g and
s are constant.]

(a): Fix some constants s, θ > 0 and let the initial velocity be r′(0) = 〈s cos θ, s sin θ〉. Then
the initial speed is

‖r′(0)‖ =
√
s2 cos2 θ + s2 sin2 θ =

√
s2(cos2 θ + sin2 θ) =

√
s2 = s.

That is, instead of specifying the initial velocity by its Cartesian coordinates, we will use the
magnitude and direction. This idea is called “polar coordinates”:



Our goal is to find explicit formulas for the position at time t. We begin by integrating
r′′(t) = 〈0,−g〉 to get r′(t). Since g is constant we have

r′(t) =

〈∫
0 dt,

∫
−g dt

〉
= 〈c1,−gt+ c2〉

for come constants of integration c1, c2. We use the initial velocity to see that

〈s cos θ, s sin θ〉 = r′(0) = 〈c1, 0 + c2〉 = 〈c1, c2〉,

and hence

r′(t) = 〈s cos θ,−gt+ s sin θ〉.
Next we integrate r′(t) to get r(t). Since s, θ and g are constant we have

r(t) =

〈∫
s cos θ dt,

∫
(−gt+ s cos θ) dt

〉
=

〈
(s cos θ)t+ c3,−

1

2
gt2 + (s sin θ)t+ c4

〉
for some constants c3, c4. We use the initial position to see that

〈0, 0〉 = r(0) = 〈0 + c3, 0 + 0 + c4〉 = 〈c3, c4〉,

and hence

r(t) =

〈
(s cos θ)t,−1

2
gt2 + (s sin θ)t

〉
.

(b): We want to know when the projectile hits the ground. In other words, we want to solve

y(t) = 0

−1

2
gt2 + (s sin θ)t = 0

t

(
−1

2
gt+ s sin θ

)
= 0.

We find that the projectile is on the ground at time t = 0 (of course) and also when

−1

2
gt+ s sin θ = 0

t =
2s

g
sin θ.

Now we want to know where the projectile hits the ground. Since it hits the ground at time
t = 2s sin θ/g, the position when it hits the ground is1

r

(
2s

g
sin θ

)
=

〈
s cos θ

2s

g
sin θ, 0

〉
=

〈
2s2

g
sin θ cos θ, 0

〉
=

〈
s2

g
sin(2θ), 0

〉
.

Here is a picture:

1Here I use the trig identity sin(2θ) = 2 sin θ cos θ to make the following computations simpler.



For which value of θ is the distance s2 sin(2θ)/g maximized? To solve this we will think of the
distance as a function of θ, with s and g fixed:

f(θ) =
s2

g
sin(2θ).

Then to maximize f(θ) we take the derivative with respect to θ and set this equal to zero:

df/dθ = 0

s2

g
cos(2θ) · 2 = 0

cos(2θ) = 0.

We conclude that 2θ = 90◦ and hence θ = 45◦. Summary: The horizontal distance of a
cannonball is maximized by aiming the cannon at 45◦ above the horizontal. This is true on
any planet and for any initial speed.

Problem 5. Fun with the Product Rule. Recall the following “product rules” for vector-
valued functions f ,g : R→ R3:

[f(t) • g(t)]′ = f ′(t) • g(t) + f(t) • g′(t),
[f(t)× g(t)]′ = f ′(t)× g(t) + f(t)× g′(t).

(a) Let r(t) be the trajectory of a particle traveling on the surface of a sphere centered at
(0, 0, 0). In this case, show that r(t) • r′(t) = 0 for all t. [Hint: By assumption we have
‖r(t)‖ = c for some constant c independent of t.]

(b) Let r(t) be the trajectory of a particle in space, and assume that r′′(t) = c(t)r(t) for
some scalar function c(t). In this case show that

[r(t)× r′(t)]′ = 〈0, 0, 0〉 for all t.

[Hint: Recall that v × v = 〈0, 0, 0〉 for any vector v.]

(a): If a particle travels on a sphere of radius c centered at (0, 0, 0) then we must have ‖r(t)‖ = c
for all t. Since ‖r(t)‖2 = r(t) • r(t) we must also have

‖r(t)‖ = c

‖r(t)‖2 = c2

r(t) • r(t) = c2.



Now we take the derivative of both sides and apply the product rule:

[r(t) • r(t)]′ = [c2]′

r′(t) • r(t) + r(t) • r′(t) = 0 c2 is constant

r(t) • r′(t) + r(t) • r′(t) = 0

2r(t) • r′(t) = 0

r(t) • r′(t) = 0.

In other words, the velocity of the particle is always tangent to the sphere. Here is a picture:

(b): Let r(t) be the trajectory of a particle in R3 and assume that the acceleration and position
vectors are in the same direction, i.e., that r′′(t) = c(t)r(t) for some scalar function c(t). Then
by using the product rule for the derivative of a cross product we find that

[r(t)× r′(t)]′ = r′(t)× r′(t) + r(t)× r′′(t)

= 〈0, 0, 0〉+ r(t)× [c(t)r(t)]

= 〈0, 0, 0〉+ c(t)[r(t)× r(t)]

= 〈0, 0, 0〉+ c(t)〈0, 0, 0〉
= 〈0, 0, 0〉.

This is a strange formula. We will explore its meaning in the next problem.

Problem 6. Universal Gravitation. Choose a coordinate system with the sun at the
origin (0, 0, 0) in R3. According to Newton, a planet at position r(t) feels a gravitational force
F(t) pointed directly toward the sun, whose magnitude is

‖F(t)‖ =
GMm

‖r(t)‖2
,

where M is the mass of the sun, m is the mass of the planet and G is a constant of gravitation.
For simplicity, let’s assume that G = M = m = 1.

(a) Show that F(t) = −GMmr(t)/‖r(t)‖3. It follows from Newton’s Second Law that

r′′(t) = − GM

‖r(t)‖3
r(t).

[Hint: Since F(t) points directly toward the sun we must have F(t) = −c(t)r(t) for
some positive scalar c(t), and hence ‖F(t)‖ = c(t)‖r(t)‖. Solve for c(t).]



(b) Conservation of Angular Momentum. Consider the angular momentum vector

L(t) = r(t)× r′(t).

Use part (a) and Problem 5(b) to show that L′(t) = 〈0, 0, 0〉 for all t. It follows that
the angular momentum vector is constant.

(a): Since F(t) = −c(t)r(t) for some positive scalar c(t) > 0 we have

‖F(t)‖ = ‖ − c(t)r(t)‖ = | − c(t)|‖r(t)‖ = c(t)‖r(t)‖.

Then since ‖F(t)‖ = −GMm/‖r(t)‖2 we have

‖F(t)‖ = GMm/‖r(t)‖2

c(t)‖r(t)‖ = GMm/‖r(t)‖2

c(t) = GMm/‖r(t)‖3.

Finally, Newton’s second law gives

mr′′(t) = F(t)

mr′′(t) = −c(t)r(t)

mr′′(t) = − GMm

‖r(t)‖3
r(t)

r′′(t) = − GM

‖r(t)‖3
r(t).

(b): Now we consider the angular momentum vector:2

L(t) = r(t)× r′(t).

From part (a) we know that r′′(t) = c(t)r(t) for some scalar c(t), hence from Problem 5(b) we
conclude that

L′(t) = [r(t)× r′(t)]′ = 〈0, 0, 0〉.
In other words, the angular momentum vector L is constant. Since L is always perpendicular
to r(t) and r′(t), this tells us, in particular, that the planet always stays in the plane that is
perpendicular to L, called the ecliptic. Here is a picture:

2Sorry, the true angular momentum is mL(t) where m is the mass of the planet.



For the Curious Only! (Everyone Else Please Ignore) If r(t) = 〈x(t), y(t), z(t)〉 then
the vector differential equation

r′′(t) = − GM

‖r(t)‖3
r(t)

is equivalent to a system of three coupled nonlinear differential equations:
x′′(t) = −GMx(t)/[x′(t)2 + y′(t)2 + z′(t)2]3/2,

y′′(t) = −GMy(t)/[x′(t)2 + y′(t)2 + z′(t)2]3/2,

z′′(t) = −GMz(t)/[x′(t)2 + y′(t)2 + z′(t)2]3/2.

One of Newton’s great achievements was to show that these equations lead to the prediction
of elliptic planetary orbits, which was earlier observed by Kepler without any explanation.

I will outline a modern proof of this using vector calculus. To simplify the formulas I will
assume that G = M = m = 1.

• We showed in 6(b) that the angular velocity L = r(t)× r′(t) is a constant vector.

• There is another conserved vector, called the Runge-Lenz vector:

A(t) = r′(t)× L− r(t)/‖r(t)‖.
One can check using identities for dot product and cross product that A′(t) = 〈0, 0, 0〉,
hence A(t) = A is constant. This is related to conservation of energy.

• Since r′(t) × L and r(t)/‖r(t)‖ are both perpendicular to L, we see that A is per-
pendicular to L. Thus we can choose a coordinate system so that L = 〈0, 0, `〉 and
A = 〈e, 0, 0〉 for some constants e, ` > 0. The number e is some measure of energy.

• Since r(t) = 〈x(t), y(t), z(t)〉 is perpendicular to L = 〈0, 0, `〉 we must have z(t) = 0 for
all t. That is, the planet stays in the x, y-plane, which is called the “ecliptic”.

• Our goal is to find formulas for x(t) and y(t). This is much easier if we switch to polar
coordinates r(t) and θ(t) where x(t) = r(t) cos[θ(t)] and y(t) = r(t) sin[θ(t)]. Note in

particular that that r(t) =
√
x(t)2 + y(t)2 = ‖r(t)‖. To save space we will write r and

θ instead of r(t) and θ(t).

• By computing the expression r(t) • (r′(t) × L) in two different ways (using various
identities for dot product and cross product) one can show that

r(1 + e cos θ) = r(t) • (r′(t)× L) = `2,

and hence
r = `2/(1 + e cos θ).

This is the equation of a “conic section” in polar coordinates.

• The constant e is called the “eccentricity” of the orbit. If 0 < e < 1 then the orbit is
an ellipse. If e > 1 then the planet has enough energy to escape the solar system and
the orbit is a hyperbola.


