Math 310 Fall 2023
Homework 2 Drew Armstrong

Problem 1. A Line in Space. Consider the line in R? passing through the two points
P=(-1,3,2) and @Q=(2,51).

(a) Express this line in parametric form r(t) = (z¢ + ta, yo + tb, 29 + tc).
(b) Find the equations of two planes in R? whose intersection is this line. [Hint: There are
infinitely many solutions. One solution uses the symmetric equations.]

(a): We can take (xg,yo0,20) = P =(-1,3,2) and (a,b,c) = PQ=Q-P= (3,2,—1) to get
r(t) = (143,34 2,2 — t).

Here is a picture:

€

(2,5,1)
G130

(b): A general point on the line satisfies (x,y, z) = (=1 + 3t,3 + 2¢,2 — t) for some ¢. We can
eliminate t to obtain the “symmetric equations” of the line:

r+1 y—-3 =2-2

3 2 -1
These equations tells us the line is the intersection of three planes:
r+1 y—3 q z+1 z-2 q y—3 z-2
= —_— 1 = 1 —_—m—m .
3 2 3 -1 2 —1

Here is a picture:
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Actually, the third plane is redundant so we can pick any two of these planes. [More generally
we can just pick any two planes that contain the line. There are infinitely many valid choices.]

Problem 2. A Plane in Space. Consider the plane in R? passing through the three points
P=(-1,3,2), Q=(2,5,1), R=(0,2,4).
(a) Find a vector that is perpendicular to this plane.
(b) Find the equation of the plane.

(a): We can find a normal vector by taking the cross product of any two vectors in the plane.
For example, we can take PR =R — P = (1,—1,2) and PQ =Q — P = (3,2,—1) to get

PRx PQ = (1,-1,2) x (3,2,-1)

i k
=det|1 -1 2
3 2 -1

. -1 2 . 1 2 1 -1
—1det<2 _1> — jdet <3 _1>+kdet <3 2)
=i(1-4)—j(-1-6)+k(2+3)

= —3i+7j+ 5k
= (—3,7,5).

(b): The plane that contains the point (z¢, 3o, z0) and is perpendicular to the vector (a,b, c)
has the equation
a(z —x0) + by —yo) + c(z — z9) = 0.
In our case we can take (x,y0,20) = P = (—1,3,2) and (a,b,c) = (-=3,7,5) to get
—3x+1)+7(y—3)+5(2—2)=0
3w+ Ty+52-3-21-10=0
=3z + 7y + 5z = 34.
Finally, let’s check that this plane contains the three given points:
—3(—1)+7(3) +5(2) =3+ 21 + 10 = 34,
=3(2)+7(5)+5(1) =—6+35+5 =34,
—3(0) +7(2) +5(4) =0+ 14 + 20 = 34.

It works. Here is a picture:
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Problem 3. Intersection of Two Planes. Consider the following two planes in R3:
1) [z + vy + 22 = 1,
2l —y + z = 3.

(a) Express the intersection of these planes as a parametrized line. [Hint: Subtract the
equations to obtain a new equation without . Then let ¢ = z be a parameter and
solve for x and y in terms of t.]

(b) We observe that u = (1,1,2) and v = (1, —1,1) are normal vectors for the two planes.
Compute the cross product u x v. How is this vector related to the line in part (a)?

(a): We subtract (2) from (1) to obtain a new equation (3) that does not involve :
B)=01)—-(2):0+2y+2z=-2.
Now subtract (3) from 2(1) to obtain a new equation (4) that does not involve y:
(4)=2(1)—3):2x+0+3z=4.
Thus we have solved for x and y in terms of z:
r=2-—(3/2)z
y=—1-(1/2)z.
If we let t = z be a parameter then we obtain a parametrized line:
x =2—(3/2),

z =1,

which can also be expressed as
r(t) = (x(t),y(t), 2(t))
=(2—(3/2)t,—1—(1/2)t,1)
=(2,—1,0) +t(—3/2,—1/2,1).

(b): On the other hand, let’s consider the normal vectors of the planes (1) and (2), which are
u=(1,1,2) and v={(1,-1,1).

Their cross product is

i j k
uxv=det|1l 1 2
1 -1 1

=1idet <_11 %) — jdet <1 ?) + kdet (} _11>
=i(14+2)-j1-2)+k(-1-1)
=3i+1j-2k
=(3,1,-2).
We observe that u x v is a scalar multiple of the velocity vector from part (a):
(3,1,—-2) = —2(—3/2,—-1/2,1).

In fact, we could have used the cross product to solve (a) in a different way. Here is a picture
(the red and blue vectors are perpendicular to the red and blue planes, respectively):
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Problem 4. Projectile Motion. A projectile is launched from the point (0,0) in R? with
an initial speed of s, at an angle of 6§ above the horizontal. Thus we have

r(0) = (0,0),
r'(0) = (scosf, ssin ).

Let g > 0 be the constant of gravity (which is 9.81 m/s? near the Earth).

(a) Use this information to compute the position r(¢) at time ¢. [Hint: Neglecting air
resistance, the acceleration due to gravity is constant: r”’(¢t) = (0, —g).]

(b) Show that the particle travels a horizontal distance of H = s%sin(26)/g before it hits
the ground. [Hint: Use your answer r(t) = (z(t),y(t)) from part (a) and solve the
equation y(t) = 0 for t. You will need the trig identity sin(26) = 2sin 6 cos6.]

(c¢) Find the value of 6 that maximizes the horizontal distance traveled. [Hint: According
to Calculus I, you should find the value of 6 that makes dH/df = 0. Recall that g and
s are constant.]

(a): Fix some constants s,6 > 0 and let the initial velocity be 1'(0) = (scos 6, ssinf). Then
the initial speed is

I£'(0)]] = V52 cos? 0 + s2 sin? 0 = \/82(0082 0 +sin20) = Vs2 = s.

That is, instead of specifying the initial velocity by its Cartesian coordinates, we will use the
magnitude and direction. This idea is called “polar coordinates”:

f"()c) - (;@se/ Sy{ne>




Our goal is to find explicit formulas for the position at time ¢t. We begin by integrating
r’(t) = (0,—g) to get r/(t). Since g is constant we have

= o[ )

<Clv gt + 02
for come constants of integration c1, co. We use the initial velocity to see that
(scosf, ssinf) =r'(0) = (1,0 + c2) = (c1, 2),

and hence
r'(t) = (scosf, —gt + ssin ).

Next we integrate r'(t) to get r(t). Since s,6 and g are constant we have

r(t) = </scos€dt,/(—gt+ 5 cos ) dt>

1
= <(s cos 0)t + cs, _ith + (ssinf)t + C4>

for some constants c3, c4. We use the initial position to see that
(0,0) =r(0) = (0+ 3,0+ 0+ ¢cq) = (c3, ca),
and hence
r(t) = <(s cos 0)t, —%th + (ssin 9)t> .
(b): We want to know when the projectile hits the ground. In other words, we want to solve
y(t) =0
—%th + (ssinf)t =0
t <—lgt =+ ssin9> =
2
We find that the projectile is on the ground at time ¢ = 0 (of course) and also when
1 .
figt + ssinf =0
2s

t = —sinf.
g

Now we want to know where the projectile hits the ground. Since it hits the ground at time
t = 2ssinf/g, the position when it hits the ground isﬂ

r <2S sm@) <3 cos 0§ sin 9,0>
g g
22
:<Ssin9c050,0>
[Y
s2 >
= ( —sin(20),0 ).
(o

Here I use the trig identity sin(20) = 2sin 6 cosf to make the following computations simpler.

Here is a picture:



s J
'éiwu--zssné

: J
(0,0) “—’/—\(\/

Aiskonce = = gin (ZG)
j §

For which value of 6 is the distance s%sin(26)/g maximized? To solve this we will think of the
distance as a function of 6, with s and ¢ fixed:

2
f(0) = —sin(26).

g
Then to maximize f(0) we take the derivative with respect to 6 and set this equal to zero:
df/df =0

= cos(26)
—cos(20)-2=0
g

cos(20) =

We conclude that 20 = 90° and hence § = 45°. Summary: The horizontal distance of a
cannonball is maximized by aiming the cannon at 45° above the horizontal. This is true on
any planet and for any initial speed.

Problem 5. Fun with the Product Rule. Recall the following “product rules” for vector-
valued functions f,g : R — R3:

[£(t) e g(t)]' = £'(t) @ g(t) +£(t) 0 &' (1),
[£(t) x g(t)] = £'(t) x g(t) +£(t) x g'().

(a) Let r(t) be the trajectory of a particle traveling on the surface of a sphere centered at
(0,0,0). In this case, show that r(t) er’(t) = 0 for all ¢. [Hint: By assumption we have
|lr(t)|| = ¢ for some constant ¢ independent of .

(b) Let r(t) be the trajectory of a particle in space, and assume that r”(t) = ¢(¢)r(¢) for
some scalar function c¢(¢). In this case show that

[r(t) x ' (t)] = (0,0,0) for all ¢.
[Hint: Recall that v x v = (0,0, 0) for any vector v.]

(a): If a particle travels on a sphere of radius ¢ centered at (0,0, 0) then we must have ||r(¢)|| = ¢
for all t. Since ||r(t)||? = r(t) @ r(¢t) we must also have
()] = ¢
le@)]* = ¢

r(t) er(t) = .



Now we take the derivative of both sides and apply the product rule:

¢? is constant

In other words, the velocity of the particle is always tangent to the sphere. Here is a picture:
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(b): Let r(¢) be the trajectory of a particle in R? and assume that the acceleration and position
vectors are in the same direction, i.e., that r”(t) = ¢(¢)r(¢) for some scalar function ¢(¢). Then
by using the product rule for the derivative of a cross product we find that

[r(t) x ' (t)]) =1'(t) x ' (t) + r(t) x ¢ (¢)

=(0,0,0) +r(t) x [e(t)r(t)]
= (0,0,0) + c(t)[r(t) x r(t)]
= (0,0,0) + ¢(¢)(0,0,0)

= (0,0,0).

This is a strange formula. We will explore its meaning in the next problem.

Problem 6. Universal Gravitation. Choose a coordinate system with the sun at the
origin (0,0,0) in R3. According to Newton, a planet at position r(t) feels a gravitational force
F(t) pointed directly toward the sun, whose magnitude is

GMm
[e()]2”

where M is the mass of the sun, m is the mass of the planet and G is a constant of gravitation.
For simplicity, let’s assume that G = M =m = 1.

(a) Show that F(t) = —GMmr(t)/||r(t)||>. It follows from Newton’s Second Law that

Mg GM r
T = pErt

IF@)] =

[Hint: Since F(¢) points directly toward the sun we must have F(t)

= —c(t)r(t) for
some positive scalar ¢(t), and hence ||F(t)|| = c(t)||r(¢)||. Solve for ¢(t).]



(b) Conservation of Angular Momentum. Consider the angular momentum vector
L(t) = r(t) x r'(t).

Use part (a) and Problem 5(b) to show that L'(t) = (0,0,0) for all t. It follows that
the angular momentum vector is constant.

(a): Since F(t) = —c(t)r(t) for some positive scalar ¢(t) > 0 we have
[FE@] =1 = e@®)r@)] = [ = c@llr@] = e@)[e@)]-
Then since ||F(t)|| = —GMm/||r(t)||*> we have

IE @) = GMm/|x(t)]?
c(t)llr ()]l = GMm/|x(t)]*
c(t) = GMm/|r(t)|°.

Finally, Newton’s second law gives

mr”(t) = F(t)
mr”(t) = —c(t)r(t)
no . GMm .
S O
r’(t) = G]WH?)I'(t).

e ()

(b): Now we consider the angular momentum vectorﬂ
L(t) = r(t) x r'(t).

From part (a) we know that r”/(t) = c(¢)r(¢t) for some scalar ¢(t), hence from Problem 5(b) we
conclude that

L'(t) = [r(t) x r'(¢)] = (0,0,0).
In other words, the angular momentum vector L is constant. Since L is always perpendicular

to r(t) and r'(t), this tells us, in particular, that the planet always stays in the plane that is
perpendicular to L, called the ecliptic. Here is a picture:

2Sorlry7 the true angular momentum is mL(t) where m is the mass of the planet.



For the Curious Only! (Everyone Else Please Ignore) If r(t) = (x(t),y(t), 2(t)) then
the vector differential equation

by GM
T = " aEr®

is equivalent to a system of three coupled nonlinear differential equations:

2() = ~GMa(t)/[/ (1) + o/ (1) + # (1),
Y1) = —GMy(t)/[ (1) + /(1) + 2/ ()],
t) = ~GMa(t)/[/ (1) + o/ (1) + 2/ (6],

One of Newton’s great achievements was to show that these equations lead to the prediction
of elliptic planetary orbits, which was earlier observed by Kepler without any explanation.

I will outline a modern proof of this using vector calculus. To simplify the formulas I will
assume that G =M =m = 1.

e We showed in 6(b) that the angular velocity L = r(¢) x r(¢) is a constant vector.

e There is another conserved vector, called the Runge-Lenz vector:
A(t) =1'(t) x L —x(t)/[r(®)].

One can check using identities for dot product and cross product that A’(¢) = (0,0, 0),
hence A(t) = A is constant. This is related to conservation of energy.

e Since r/(t) x L and r(¢)/||r(¢)|| are both perpendicular to L, we see that A is per-
pendicular to L. Thus we can choose a coordinate system so that L = (0,0,¢) and
A = (e,0,0) for some constants e, > 0. The number e is some measure of energy.

e Since r(t) = (x(t),y(t), 2(t)) is perpendicular to L = (0,0, ¢) we must have z(¢) = 0 for
all £. That is, the planet stays in the x, y-plane, which is called the “ecliptic”.

e Our goal is to find formulas for z(¢) and y(¢). This is much easier if we switch to polar
coordinates r(t) and 6(t) where z(t) = r(t) cos[f(t)] and y(t) = r(t)sin[f(t)]. Note in
particular that that r(¢t) = v/z(t)? + y(¢)? = ||r(¢)]|. To save space we will write r and
0 instead of r(t) and 6(t).

e By computing the expression r(t) e (r'(¢t) x L) in two different ways (using various
identities for dot product and cross product) one can show that
r(1+ ecosf) =r(t) e (r'(t) x L) = £2,
and hence
r=0?/(1+ecosf).
This is the equation of a “conic section” in polar coordinates.

e The constant e is called the “eccentricity” of the orbit. If 0 < e < 1 then the orbit is
an ellipse. If e > 1 then the planet has enough energy to escape the solar system and
the orbit is a hyperbola.



