Problem 1. A Line in Space. Consider the line in \mathbb{R}^{3} passing through the two points

$$
P=(-1,3,2) \quad \text { and } \quad Q=(2,5,1) .
$$

(a) Express this line in parametric form $\mathbf{r}(t)=\left(x_{0}+t a, y_{0}+t b, z_{0}+t c\right)$.
(b) Find the equations of two planes in \mathbb{R}^{3} whose intersection is this line. [Hint: There are infinitely many solutions. One solution uses the symmetric equations.]

Problem 2. A Plane in Space. Consider the plane in \mathbb{R}^{3} passing through the three points

$$
P=(-1,3,2), \quad Q=(2,5,1), \quad R=(0,2,4) .
$$

(a) Find a vector that is perpendicular to this plane.
(b) Find the equation of the plane.

Problem 3. Intersection of Two Planes. Consider the following two planes in \mathbb{R}^{3} :

$$
\left\{\begin{array}{l}
x+y+2 z=1 \\
x-y+z=3
\end{array}\right.
$$

(a) Express the intersection of these planes as a parametrized line. [Hint: Subtract the equations to obtain a new equation without x. Then let $t=z$ be a parameter and solve for x and y in terms of t.]
(b) We observe that $\mathbf{u}=\langle 1,1,2\rangle$ and $\mathbf{v}=\langle 1,-1,1\rangle$ are normal vectors for the two planes. Compute the cross product $\mathbf{u} \times \mathbf{v}$. How is this vector related to the line in part (a)?

Problem 4. Projectile Motion. A projectile is launched from the point $(0,0)$ in \mathbb{R}^{2} with an initial speed of s, at an angle of θ above the horizontal. Thus we have

$$
\begin{aligned}
\mathbf{r}(0) & =\langle 0,0\rangle \\
\mathbf{r}^{\prime}(0) & =\langle s \cos \theta, s \sin \theta\rangle .
\end{aligned}
$$

Let $g>0$ be the constant of gravity (which is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ near the Earth).
(a) Use this information to compute the position $\mathbf{r}(t)$ at time t. [Hint: Neglecting air resistance, the acceleration due to gravity is constant: $\mathbf{r}^{\prime \prime}(t)=\langle 0,-g\rangle$.]
(b) Show that the particle travels a horizontal distance of $H=s^{2} \sin (2 \theta) / g$ before it hits the ground. [Hint: Use your answer $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ from part (a) and solve the equation $y(t)=0$ for t. You will need the trig identity $\sin (2 \theta)=2 \sin \theta \cos \theta$.]
(c) Find the value of θ that maximizes the horizontal distance traveled. [Hint: According to Calculus I, you should find the value of θ that makes $d H / d \theta=0$. Recall that g and s are constant.]

Problem 5. Fun with the Product Rule. Recall the following "product rules" for vectorvalued functions $\mathbf{f}, \mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{3}$:

$$
\begin{aligned}
{[\mathbf{f}(t) \bullet \mathbf{g}(t)]^{\prime} } & =\mathbf{f}^{\prime}(t) \bullet \mathbf{g}(t)+\mathbf{f}(t) \bullet \mathbf{g}^{\prime}(t), \\
{[\mathbf{f}(t) \times \mathbf{g}(t)]^{\prime} } & =\mathbf{f}^{\prime}(t) \times \mathbf{g}(t)+\mathbf{f}(t) \times \mathbf{g}^{\prime}(t)
\end{aligned}
$$

(a) Let $\mathbf{r}(t)$ be the trajectory of a particle traveling on the surface of a sphere centered at $(0,0,0)$. In this case, show that $\mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t)=0$ for all t. [Hint: By assumption we have $\|\mathbf{r}(t)\|=c$ for some constant c independent of t.]
(b) Let $\mathbf{r}(t)$ be the trajectory of a particle in space, and assume that $\mathbf{r}^{\prime \prime}(t)=c(t) \mathbf{r}(t)$ for some scalar function $c(t)$. In this case show that

$$
\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]^{\prime}=\langle 0,0,0\rangle \quad \text { for all } t .
$$

[Hint: Recall that $\mathbf{v} \times \mathbf{v}=\langle 0,0,0\rangle$ for any vector \mathbf{v}.]
Problem 6. Universal Gravitation. Choose a coordinate system with the sun at the origin $(0,0,0)$ in \mathbb{R}^{3}. According to Newton, a planet at position $\mathbf{r}(t)$ feels a gravitational force $\mathbf{F}(t)$ pointed directly toward the sun. The magnitude of this force is

$$
\|\mathbf{F}(t)\|=\frac{G M m}{\|\mathbf{r}(t)\|^{2}}
$$

where M is the mass of the sun, m is the mass of the planet and G is a constant of gravitation. For simplicity, let's assume that $G=M=m=1$.
(a) Show that $\mathbf{F}(t)=-G M m \mathbf{r}(t) /\|\mathbf{r}(t)\|^{3}$. It follows from Newton's Second Law that

$$
\mathbf{r}^{\prime \prime}(t)=-\frac{G M}{\|\mathbf{r}(t)\|^{3}} \mathbf{r}(t) .
$$

[Hint: Since $\mathbf{F}(t)$ points directly toward the sun we must have $\mathbf{F}(t)=-c(t) \mathbf{r}(t)$ for some positive scalar $c(t)$, and hence $\|\mathbf{F}(t)\|=c(t)\|\mathbf{r}(t)\|$. Solve for $c(t)$.]
(b) Conservation of Angular Momentum. Consider the angular momentum vector

$$
\mathbf{L}(t)=\mathbf{r}(t) \times \mathbf{r}^{\prime}(t) .
$$

Use part (a) and Problem 5(b) to show that $\mathbf{L}^{\prime}(t)=\langle 0,0,0\rangle$ for all t. It follows that the angular momentum vector is constant.

