No electronic devices are allowed. No collaboration is allowed. There are 10 pages and each page is worth 6 points, for a total of 60 points.

1. A Plane in Space. Consider three points in space

$$
P=(1,0,0), \quad Q=(2,1,1), \quad R=(0,2,1) .
$$

(a) Find the equation of the plane that passes through P, Q and R. [Hint: The fastest way is to compute a cross product.]

Let's define the vectors $\mathbf{u}=Q-P=\langle 1,1,1\rangle$ and $\mathbf{v}=R-P=\langle-1,2,1\rangle$. Now we compute the cross product:

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =" \operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{i} & \mathbf{k} \\
1 & 1 & 1 \\
-1 & 2 & 1
\end{array}\right) " \\
& =\mathbf{i} \operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
2 & 1
\end{array}\right)-\mathbf{j} \operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)+\mathbf{k} \operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right) \\
& =\mathbf{i}(1-2)-\mathbf{j}(1+1)+\mathbf{k}(2+1) \\
& =-\mathbf{i}-2 \mathbf{j}+3 \mathbf{k} \\
& =\langle-1,-2,3\rangle .
\end{aligned}
$$

Since \mathbf{u} and \mathbf{v} are in the plane, the vector $\mathbf{u} \times \mathbf{v}$ is perpendicular to the plane. Picking any point in the plane, say $P=(1,0,0)$, the point-normal vector equation of the plane is

$$
\begin{aligned}
\langle-1,-2,3\rangle \bullet\langle x-1, y-0, z-0\rangle & =0 \\
-(x-1)-2(y-0)+3(z-0) & =0 \\
-x-2 y+3 z+1 & =0 \\
x+2 y-3 z & =1 .
\end{aligned}
$$

(b) Compute the area of the triangle $P Q R$. [Hint: You can think of the triangle as half of a parallelogram.]

The area of the triangle is one half the area of the parallelogram spanned by \mathbf{u} and \mathbf{v}. The area of the parallelogram can be computed via the dot product or the cross product. Since we already know the cross product, we find that

$$
\begin{aligned}
(\text { area of triangle }) & =\frac{1}{2}(\text { area of parallelogram }) \\
& =\frac{1}{2}\|\mathbf{u} \times \mathbf{v}\| \\
& =\frac{1}{2} \sqrt{(-1)^{2}+(-2)^{2}+3^{2}} \\
& =\frac{1}{2} \sqrt{14} .
\end{aligned}
$$

Here is a picture of the plane and the three points $\stackrel{1}{1}^{1}$

2. Motion in the Plane. Consider a path $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ with acceleration $\mathbf{r}^{\prime \prime}(t)=\langle 2,6 t\rangle$.
(a) If the initial velocity is $\mathbf{r}^{\prime}(0)=\langle 0,0\rangle$ and the initial position is $\mathbf{r}(0)=(0,0)$, find the position at time t.
Integrate once to get the velocity:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\int \mathbf{r}^{\prime \prime}(t) d t \\
& =\left\langle\int 2 d t, \int 6 t d t\right\rangle \\
& =\left\langle 2 t+c_{1}, 3 t^{2}+c_{2}\right\rangle
\end{aligned}
$$

The initial condition $\mathbf{r}^{\prime}(0)=\langle 0,0\rangle$ gives $c_{1}=0$ and $c_{2}=0$, hence $\mathbf{r}^{\prime}(t)=\left\langle 2 t, 3 t^{3}\right\rangle$. Integrate again to get the position:

$$
\begin{aligned}
\mathbf{r}(t) & =\int \mathbf{r}^{\prime}(t) d t \\
& =\left\langle\int 2 t d t, \int 3^{2} t d t\right\rangle \\
& =\left\langle t^{2}+c_{3}, t^{3}+c_{4}\right\rangle
\end{aligned}
$$

The initial condition $\mathbf{r}(0)=(0,0)$ gives $c_{3}=0$ and $c_{4}=0$, hence $\mathbf{r}(t)=\left\langle t^{2}, t^{3}\right\rangle$.
(b) Set up an integral to calculate the arc length traveled by the particle between $t=0$ and $t=1$. [This integral can be solved by hand but you don't need to do it.]

[^0]The arc length traveled between $t=0$ and $t=1$ is

$$
\begin{aligned}
(\text { arc length }) & =\int_{0}^{1}(\text { speed }) d t \\
& =\int_{0}^{1}\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
& =\int_{0}^{1} \sqrt{(2 t)^{2}+\left(3 t^{2}\right)^{2}} d t \\
& =\int_{0}^{1} \sqrt{4 t^{2}+9 t^{4}} d t
\end{aligned}
$$

We can stop here, or we can observe that there is lucky simplification:

$$
\begin{aligned}
\int_{0}^{1} \sqrt{4 t^{2}+9 t^{4}} d t & =\int_{0}^{1} \sqrt{t^{2}\left(4+9 t^{2}\right)} d t \\
& =\int_{0}^{1} t \sqrt{4+9 t^{2}} d t \quad\left(u=4+9 t^{2}\right) \\
& =\int_{9}^{13} \frac{1}{18} \sqrt{u} d u \\
& =\frac{1}{18}\left[\frac{2}{3} u^{3 / 2}\right]_{4}^{13} \\
& =\frac{1}{27}\left((13)^{3 / 2}-(4)^{3 / 2}\right) \\
& \approx 1.44
\end{aligned}
$$

Here is a picture of the path:

3. Linear Approximation. The volume of a cone with radius r and height h is

$$
V(r, h)=\frac{1}{3} \pi r^{2} h
$$

(a) Use the chain rule to express the differential $d V$ in terms of $d r$ and $d h$.

$$
\begin{aligned}
d V & =\frac{\partial V}{\partial r} d r+\frac{\partial V}{\partial h} d h \\
& =\frac{2}{3} \pi r h d r+\frac{1}{3} \pi r^{2} d h .
\end{aligned}
$$

(b) Suppose you measure the can with a ruler to find that $r=5 \mathrm{~cm}$ and $h=9 \mathrm{~cm}$, hence $V=75 \pi \mathrm{~cm}^{3}$. If the sensitivity of the ruler is 0.1 cm , estimate the error in your computed value of V.

The result of part (a) tells us that

$$
\Delta V \approx \frac{2}{3} \pi r h \Delta r+\frac{1}{3} \pi r^{2} \Delta h
$$

Substituting $r=5, h=9$ and $\Delta r=\Delta h=0.1$ gives

$$
\begin{aligned}
\Delta V & \approx \frac{2}{3} \pi(5)(9)(0.1)+\frac{1}{3} \pi(5)^{2}(0.1) \\
& =3 \pi+25 \pi / 30 \\
& =115 \pi / 30 .
\end{aligned}
$$

(The percent error is $\Delta V / V=(115 \pi / 30) /(75 \pi) \approx 5 \%$.)
4. Tangent Plane to a Surface. Consider the scalar field $f(x, y, z)=x^{2}+y^{2}+3 y z$.
(a) Compute the gradient vector field $\nabla f(x, y, z)$.

$$
\begin{aligned}
\nabla f & =\langle\partial f / \partial x, \partial f / \partial y, \partial f / \partial z\rangle \\
& =\langle 2 x, 2 y+3 z, 3 y\rangle .
\end{aligned}
$$

(b) Note that $f(1,1,1)=1^{2}+1^{2}+3(1)(1)=5$. Use part (a) to find the equation of the tangent plane to the surface $f(x, y, z)=5$ at the point $(1,1,1)$.

The gradient vector $\nabla f(1,1,1)$ is perpendicular to the level surface $f(x, y, z)=$ $f(1,1,1)$. Hence the equation of the tangent plane is

$$
\begin{aligned}
& \nabla f(1,1,1) \bullet\langle x-1, y-1, z-1\rangle=0 \\
&\langle 2,5,3\rangle \bullet\langle x-1, y-1, z-1\rangle=0 \\
& 2(x-1)+5(y-1)+3(z-1)=0 \\
& 2 x+5 y+3 z=10 .
\end{aligned}
$$

Here is a picture $:^{2}$

[^1]
5. Optimization. The scalar field $f(x, y)=x^{4}-8 x^{2}+y^{2}$ has three critical points:
$$
(0,0), \quad(-2,0), \quad(+2,0) .
$$
(a) Compute the 2×2 Hessian matrix $H f(x, y)$ and its determinant.

We compute the first and second partial derivatives:

$$
\begin{aligned}
f_{x} & =4 x^{3}-16 x \\
f_{y} & =2 y \\
f_{x x} & =12 x^{2}-16 \\
f_{x y} & =0 \\
f_{y x} & =0 \\
f_{y y} & =2 .
\end{aligned}
$$

Hence the Hessian matrix is

$$
H f=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
12 x^{2}-16 & 0 \\
0 & 2
\end{array}\right)
$$

and its determinant is

$$
\operatorname{det}(H f)=\left(12 x^{2}-16\right)(2)-(0)(0)=8\left(3 x^{2}-4\right)
$$

(b) Apply the second derivative test to determine whether each of the three critical points is a local max, a local min or a saddle point of f.

Since $\operatorname{det}(H f)(0,0)=8(-4)<0$ we conclude that $(0,0)$ is a saddle point of f.

Since $\operatorname{det}(H f)(\pm 2,0)=8\left(3(\pm 2)^{2}-4\right)>0$ we conclude that each of $(\pm 2,0)$ is a local max or min of f. Since $f_{y y}=2>0$ at both of these points, they are both local minima. [We could also check that $f_{x x}>0$ at both points. Since $\operatorname{det}(H f)>0$ the numbers $f_{x x}$ and $f_{y y}$ must have the same sign.]

Here is a picture 3^{3}

6. Integration in the Plane.

(a) Integrate $f(x, y)=x+y$ over the rectangle with $0 \leq x \leq 1$ and $0 \leq y \leq 2$.

$$
\begin{aligned}
\iint_{\text {rectangle }}(x+y) d x d y & =\int_{0}^{2}\left(\int_{0}^{1}(x+y) d x\right) d y \\
& =\int_{0}^{2}\left[\frac{x^{2}}{2}+x y\right]_{0}^{1} d y \\
& =\int_{0}^{2}\left(\frac{1}{2}+y\right) d y \\
& =\left[\frac{1}{2} y+\frac{y^{2}}{2}\right]_{0}^{2} \\
& =1+2 \\
& =3
\end{aligned}
$$

[^2](b) Integrate $f(x, y)=x+y$ over the region between the x-axis and the parabola $y=x^{2}$, for $0 \leq x \leq 1$. [Hint: First parametrize the region.]
This region D is parametrized by $0 \leq x \leq 1$ and $0 \leq y \leq x^{2}$. The integral is
\[

$$
\begin{aligned}
\iint_{D}(x+y) d x d y & =\int_{0}^{1}\left(\int_{0}^{x^{2}}(x+y) d y\right) d x \\
& =\int_{0}^{1}\left[x y+\frac{y^{2}}{2}\right]_{0}^{x^{2}} d x \\
& =\int_{0}^{1}\left(x^{3}+\frac{x^{4}}{2}\right) d x \\
& =\left[\frac{x^{4}}{4} y+\frac{x^{5}}{10}\right]_{0}^{1} \\
& =1 / 4+1 / 10 \\
& =7 / 20
\end{aligned}
$$
\]

7. Cylindrical and Spherical Coordinates.

(a) Use cylindrical coordinates to integrate the function $f(x, y, z)=x$ over the cylinder with $x^{2}+y^{2} \leq 1$ and $0 \leq z \leq 1$. [Hint: We have $x=r \cos \theta$ and $d x d y d z=r d r d \theta d z$.] Let $x=r \cos \theta$ and $y=r \sin \theta$ so the cylinder is parametrized by $0 \leq r \leq 1$, $0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 1$. The integral is

$$
\begin{aligned}
\iiint_{\text {cylinder }} x d x d y d z & =\iiint_{\text {cylinder }} r \cos \theta r d r d \theta d z \\
& =\int_{0}^{1} r^{2} d \theta \cdot \int_{0}^{2 \pi} \cos \theta d \theta \cdot \int_{0}^{1} 1 d z \\
& =\left(\frac{1^{3}}{3}-\frac{0^{3}}{3}\right)(\sin (2 \pi)-\sin (0))(1-0) \\
& =(1 / 3)(0)(1) \\
& =0 .
\end{aligned}
$$

The integral is zero because of a symmetry. Positive and negative values of x cancel.
(b) Use spherical coordinates to compute the volume of the sphere $x^{2}+y^{2}+z^{2} \leq 1$. [Hint: $d x d y d z=\rho^{2} \sin \varphi d \rho d \theta d \varphi$.]

The sphere is parametrized by $0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq \pi$. The volume is

$$
\begin{aligned}
(\text { volume of sphere) } & =\iiint_{\text {sphere }} 1 d x d y d z \\
& =\iiint_{\text {sphere }} 1 \rho^{2} \sin \varphi d \rho d \theta d \varphi \\
& =\int_{0}^{1} \rho^{2} d \rho \cdot \int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{\pi} \sin \varphi d \varphi \\
& =\left(\frac{1^{3}}{3}-\frac{0^{3}}{3}\right)(2 \pi-0)(-\cos (\pi)+\cos (0))
\end{aligned}
$$

$$
\begin{aligned}
& =(1 / 3)(2 \pi)(2) \\
& =4 \pi / 3
\end{aligned}
$$

This agrees with the formula $(4 / 3) \pi(\text { radius })^{3}$ since our sphere has radius 1 .
8. Surface Area. Consider the following parametrized surface in \mathbb{R}^{3} :

$$
\mathbf{r}(u, v)=\langle 1+u-v, u+2 v, u+v\rangle \quad \text { with } 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1
$$

(a) Compute the tangent vectors \mathbf{r}_{u} and \mathbf{r}_{v}, and the normal vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$.

$$
\begin{aligned}
\mathbf{r}_{u} & =\langle 1,1,1\rangle \\
\mathbf{r}_{v} & =-1,2,1\rangle \\
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\langle-1,-2,3\rangle
\end{aligned}
$$

We already did this computation in Problem 1.
(b) Use your answer from part (a) to compute the area of the surface. [This surface integral is unusual because it can be solved by hand.]

$$
\begin{aligned}
(\text { surface area) } & =\iint 1\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v \\
& =\iint \sqrt{(-1)^{2}+(-2)^{2}+3^{3}} d u d v \\
& =\int_{0}^{1} \int_{0}^{1} \sqrt{14} d u d v \\
& =\sqrt{14}
\end{aligned}
$$

Indeed, the surface $\mathbf{r}(u, v)$ with $0 \leq u \leq 1$ and $0 \leq v \leq 1$ is just the same parallelogram that we considered in Problem 1. Here is a picture \uplus^{4}

[^3]9. Green's Theorem. Consider the vector field $\mathbf{F}(x, y)=\langle P, Q\rangle=\left\langle y^{2}, x y\right\rangle$.
(a) Compute the line integral of \mathbf{F} along the path $\mathbf{r}(t)=\langle t, t\rangle$ for $0 \leq t \leq 1$.
\[

$$
\begin{aligned}
\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t & =\int_{0}^{1} \mathbf{F}(t, t) \bullet\langle 1,1\rangle d t \\
& =\int_{0}^{1}\left\langle t^{2}, t^{2}\right\rangle \bullet\langle 1,1\rangle d t \\
& =\int_{0}^{1} 2 t^{2} d t \\
& =2 / 3
\end{aligned}
$$
\]

(b) Compute the line integral of \mathbf{F} along the path $\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle$ for $0 \leq t \leq 1$.

$$
\begin{aligned}
\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t & =\int_{0}^{1} \mathbf{F}\left(t, t^{2}\right) \bullet\langle 1,2 t\rangle d t \\
& =\int_{0}^{1}\left\langle t^{4}, t^{3}\right\rangle \bullet\langle 1,2 t\rangle d t \\
& =\int_{0}^{1}\left(t^{4}+2 t^{4}\right) d t \\
& =\int_{0}^{1} 3 t^{4} d t \\
& =3 / 5 .
\end{aligned}
$$

(c) Compute the integral of the scalar $\operatorname{curl}(\mathbf{F})=Q_{x}-P_{y}=-y$ over the two-dimensional region with $0 \leq x \leq 1$ and $x^{2} \leq y \leq x$.

$$
\begin{aligned}
\iint_{D} \operatorname{curl}(\mathbf{F}) d x d y & =\iint_{D}(-y) d x d y \\
& =\int_{0}^{1}\left(\int_{x^{2}}^{x}-y d y\right) d x \\
& =\int_{0}^{1}\left[-\frac{y^{2}}{2}\right]_{x^{2}}^{x} d x \\
& =\int_{0}^{1}\left(-\frac{x^{2}}{2}+\frac{x^{4}}{2}\right) d x \\
& =\left[-\frac{x^{3}}{6}+\frac{x^{5}}{10}\right]_{0}^{1} \\
& =\left(-\frac{1}{6}+\frac{1}{10}\right) \\
& =-1 / 15 .
\end{aligned}
$$

(d) Your answers to parts (a), (b) and (c) are related by Green's Theorem. Explain the relationship. It may be helpful to draw a picture.

For any two-dimensional region D, Green's Theorem says that

$$
\iint_{D} \operatorname{curl}(\mathbf{F})=\int_{\partial D} \mathbf{F},
$$

where ∂D is the boundary curve of D, oriented so that D is "to the left". In our case the region D is the one described in part (c). We can describe the boundary as $\partial D=C_{2}-C_{1}$ where C_{2} is the path in (b) and C_{1} is the path in (a). Picture:

It follows from Green's Theorem that

$$
\begin{aligned}
\iint_{D} \operatorname{curl}(\mathbf{F}) & =\int_{C_{2}-C_{1}} \mathbf{F} \\
\iint_{D} \operatorname{curl}(\mathbf{F}) & =\int_{C_{2}} \mathbf{F}-\int_{C_{1}} \mathbf{F} \\
\text { (answer to (c))} & =(\text { answer to }(\mathrm{b}))-(\text { answer to (a)). }
\end{aligned}
$$

Indeed, we verify that $-1 / 15=3 / 5-2 / 3$.

[^0]: 1 https://www.desmos.com/3d/69c8809e40

[^1]: ${ }^{2}$ https://www.desmos.com/3d/6c14390a82

[^2]: ${ }^{3}$ https://www.desmos.com/3d/7788ae17e1

[^3]: ${ }^{4}$ https://www.desmos.com/3d/c1ac15e534

