No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

Problem 1. Consider three points in space

 $P = (1, 1, 2), \quad Q = (3, 1, 1), \quad R = (2, 3, 4),$

and consider the vectors $\mathbf{u} = Q - P = \langle 2, 0, -1 \rangle$, $\mathbf{v} = R - P = \langle 1, 2, 2 \rangle$.

(a) Compute the cross product $\mathbf{u} \times \mathbf{v}$ and use this to find the equation of the plane that passes through P, Q and R.

The cross product is

$$\mathbf{u} \times \mathbf{v} = \text{``det} \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -1 \\ 1 & 2 & 2 \end{pmatrix},$$
$$= \left\langle \det \begin{pmatrix} 0 & -1 \\ 2 & 2 \end{pmatrix}, - \det \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}, \det \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \right\rangle$$
$$= \langle 2, -5, 4 \rangle.$$

Since the plane has normal vector $\mathbf{u} \times \mathbf{v} = \langle 2, -5, 4 \rangle$ and passes through the point P = (1, 1, 2) (for example), the equation of the plane is

$$\langle 2, -5, 4 \rangle \bullet \langle x - 1, y - 1, z - 2 \rangle = 0 2(x - 1) - 5(y - 1) + 4(z - 2) = 0 2x - 5y + 4z - 2 + 5 - 8 = 0 2x - 5y + 4z = 5$$

(b) Compute the **area** of the triangle PQR. [Hint: This triangle is half of the parallelogram generated by **u** and **v**.]

The area of the parallelogram spanned by \mathbf{u} and \mathbf{v} is

$$\|\mathbf{u} \times \mathbf{v}\| = \|\langle 2, -5, 4 \rangle\| = \sqrt{2^2 + (-5)^2 + 4^2} = \sqrt{45}.$$

Hence the area of triangle PQR is $\sqrt{45}/2$.

Alternatively, let θ be the angle between **u** and **v**. Using the dot product gives

$$\cos\theta = \frac{\mathbf{u} \bullet \mathbf{v}}{\sqrt{\mathbf{u} \bullet \mathbf{u}}\sqrt{\mathbf{v} \bullet \mathbf{v}}} = \frac{0}{\sqrt{5}\sqrt{9}} = 0.$$

(It's a right triangle.) Then the area of the parallelogram spanned by \mathbf{u} and \mathbf{v} is

$$\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta = \sqrt{5}\sqrt{9}\sqrt{1 - \cos^2 \theta} = \sqrt{5}\sqrt{9}\sqrt{1 - 0} = \sqrt{45}$$

Here is a picture of Problem $1:^1$

¹You did not need to draw a picture.

Problem 2. Let $\mathbf{r} : \mathbb{R} \to \mathbb{R}^2$ be the trajectory of a particle in the *x*, *y*-plane. Suppose there is a constant downward acceleration: $\mathbf{r}''(t) = \langle 0, -6 \rangle$.

(a) If the initial velocity is $\mathbf{r}'(0) = \langle 1, 2 \rangle$ and the initial position is $\mathbf{r}(0) = \langle 0, 0 \rangle$, find the position at time t.

Integrate once to get the velocity:

$$\mathbf{r}'(t) = \int \mathbf{r}''(t) dt$$
$$= \langle \int 0 dt, \int -6 dt \rangle$$
$$= \langle c_1, -6t + c_2 \rangle.$$

Substituting t = 0 gives $c_1 = 1$ and $c_2 = 2$, hence $\mathbf{r}'(t) = \langle 1, 2 - 6t \rangle.$

Integrate again to get the position:

$$\mathbf{r}(t) = \int \mathbf{r}'(t) dt$$
$$= \langle \int 1 dt, \int (2 - 6t) dt \rangle$$
$$= \langle t + c_3, 2t - 3t^2 + c_4 \rangle$$

Substituting t = 0 gives $c_3 = 0$ and $c_4 = 0$, hence $\mathbf{r}(t) = \langle t, -3t^2 + 2t \rangle.$

Here is a picture of the trajectory between t = 0 and t = 1:²

²You did not need to draw a picture.

(b) Set up an integral to calculate the **arc length** traveled by the particle between t = 0 and t = 1. [This integral is too difficult to evaluate by hand.]

The arc length traveled between t = 0 and t = 1 is

arc length =
$$\int_0^1$$
 speed dt
= $\int_0^1 ||\mathbf{r}'(t)|| dt$
= $\int_0^1 \sqrt{1^2 + (2 - 6t)^2} dt$
(≈ 2.042 according to my computer).

Problem 3. A cylindrical can with radius r and height h has surface area $A(r,h) = 2\pi r^2 + 2\pi r h = 2\pi r (r+h).$

(a) Use the chain rule to compute the differential dA in terms of dr and dh.

The chain rule tells us that

$$dA = (\partial A/\partial r)dr + (\partial A/\partial h)dh$$

= $(4\pi r + 2\pi h)dr + 2\pi r dh.$

(b) Suppose you measure the can with a ruler to find that r = 5 cm and h = 10 cm, hence $A = 150\pi$ cm². If the sensitivity of the ruler is 0.1 cm, estimate the error in your computed value of A.

The result in part (a) is exactly true for infinitesimal differentials; it is approximately true for small finite differences:

$$\Delta A \approx (4\pi r + 2\pi h)\Delta r + 2\pi r\Delta h.$$

Substituting r = 5, h = 10, $\Delta r = 0.1$ and $\Delta h = 0.1$ gives

$$\Delta A \approx (20\pi + 20\pi)(0.1) + 10\pi(0.1) = 50\pi(0.1) = 5\pi.$$

[Remark: The percent error in the computed value of A is $5\pi/150\pi = 1/30 = 3.33\%$. The percent error in the measurements of r and h was 2% and 1%, respectively. I did not ask for the percent error.]

Problem 4. Consider the scalar field $f(x, y, z) = x^2 y z$.

(a) Compute the gradient vector field ∇f .

The gradient vector field is

$$\nabla f = \langle \partial f / \partial x, \partial f / \partial y, \partial f / \partial z \rangle$$
$$= \langle 2xyz, x^2z, x^2y \rangle.$$

(b) Note that $f(1,2,3) = 1^2 \cdot 2 \cdot 3 = 6$. Use part (a) to find the equation of the tangent plane to the surface $x^2yz = 6$ at the point (1,2,3).

The gradient vector $\nabla f(1,2,3) = \langle 1^2 \cdot 2 \cdot 3, 1^2 \cdot 3, 1^2 \cdot 2 \rangle = \langle 12,3,2 \rangle$ to the tangent plane at (1,2,3). Hence the equation of the tangent plane is

 $\nabla f(1,2,3) \bullet \langle x-1, y-2, z-3 \rangle = 0$ $\langle 12,3,2 \rangle \bullet \langle x-1, y-2, z-3 \rangle = 0$ 12(x-1) + 3(y-2) + 2(z-3) = 0 12x + 3y + 2z - 12 - 6 - 6 = 012x + 3y + 2z = 24.

Desmos has recently introduced 3D graphing³ and it works really well. Here is a picture of the surface $x^2yz = 6$ and the tangent plane at (1, 2, 3):

 $^{^{3}\}mathrm{It}$ is currently in Beta. Type <code>desmos.com/3d</code> to get there.

Problem 5. The function $f(x, y) = -2x^3 + 3xy - y^3/4$ has critical points (0, 0) and (1, 2).

(a) Compute the Hessian matrix and its determinant.

We compute the first and second partial derivatives:

$$f_x = -6x^2 + 3y,$$

$$f_y = 3x - 3y^2/4,$$

$$f_{xx} = -12x,$$

$$f_{xy} = 3,$$

$$f_{yx} = 3,$$

$$f_{yy} = -3y/2.$$

Hence the Hessian matrix is

$$Hf = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} -12x & 3 \\ 3 & -3y/2 \end{pmatrix},$$

and its determinant is

$$\det(Hf) = (-12x)(-3y/2) - (3)(3) = 18xy - 9.$$

(b) Use the second derivative test to determine whether each of the two critical points is a local max, local min or a saddle point.

The critical point (0,0) has det(Hf)(0,0) = -9 < 0, hence it is a saddle point.

The critical point (1,2) has det(Hf)(1,2) = 36 - 9 > 0, hence is either a local max or min. To determine which, we can examine the sign of $f_{xx}(1,2)$ or $f_{yy}(1,2)$ (they have the same sign). Since $f_{xx}(1,2) = -12(1) < 0$ we conclude that (1,2) is a **local maximum**. Here is a picture produced by Desmos:

