
Math 309 Fall 2014
Homework 6 Drew Armstrong

1. Expected Value. Let S be a finite sample space with probability function P : ℘(S)→ R
and let X : S → R be any random variable.

(a) For all real numbers k ∈ R we define the event Ek = {s ∈ S : X(s) = k}. This is the
set of outcomes that take value k under X. Then we define P (X = k) := P (Ek) and
we call this the “probability that X equals k”. Explain why

P (X = k) =
∑
s∈Ek

P (s).

(The sum is over elements s of the set Ek and we use the notation P (s) := P ({s}).)
(b) Following Archimedes’ “Law of the Lever”, we define the expected value of the

random variable X by

E(X) :=
∑
k

k · P (X = k).

Since S is finite, there are only finitely many values k such that P (X = k) 6= 0, so we
can interpret this as a finite sum (and hence avoid any complications with integrals
or convergence). Use part (a) to explain why

E(X) =
∑
s∈S

X(s) · P (s),

where the sum is over all elements s of the sample space S.

(a) We first recall Kolmogorov’s third axiom of probability:

P (E t F ) = P (E) + P (F ).

If E ⊆ S is any event, then since S is finite we can write E = {s1, s2, . . . , sn}. Note that E is
a disjoint union of its one-element subsets:

E = {s1} t {s2} t · · · t {sn}.

Then applying Kolmogorov’s third axiom (and induction) gives

P (E) = P ({s1}) + P ({s2}) + · · ·+ P ({sn})
= P (s1) + P (s2) + · · ·+ P (sn)

=

n∑
i=1

P (si)

=
∑
s∈E

P (s).

In other words, the probability of an event equals the sum of the probabilites of the outcomes
it contains. Since this is true for any event E, it is true in particular for the event Ek.

(b) Recall that Ek is the set of outcomes s ∈ S such that X(s) = k. Since X takes every
element of S to some number, we observe that S is the disjoint union of the sets Ek over all



the possible values of k. Thus we have∑
s∈S

X(s) · P (s) =
∑
k

∑
s∈Ek

X(s) · P (s)

=
∑
k

∑
s∈Ek

k · P (s)

=
∑
k

k
∑
s∈Ek

P (s)

=
∑
k

k · P (Ek)

=
∑
k

k · P (X = k).

The difficult part of this is just remembering what each piece of notation means. There is
always some effort in setting up a mathematical notation, but once it’s set up it can help us
solve problems more easily by automating the process of reasoning.

2. Linearity of Expectation. Let X and Y be two random variables on a finite sample space
S, and let a and b be constants. We define the random variable aX + bY by (aX + bY )(s) :=
aX(s) + bY (s) for all s ∈ S.

(a) Use the result of Problem 1 to prove that E(aX + bY ) = aE(X) + bE(Y ).
(b) Use the result of part (a) to show that

E((X − E(X))2) = E(X(X − 1)) + E(X)− E(X)2.

(a) We use the formula E(X) =
∑

s∈S X(s)P (s) to obtain

E(aX + bY ) =
∑
s∈S

(aX + bY )(s)P (s)

=
∑
s∈S

(aX(s) + bY (s))P (s)

=
∑
s∈S

(aX(s)P (s) + bY (s)P (s))

= a
∑
s∈S

X(s)P (s) + b
∑
s∈S

Y (s)P (s)

= aE(X) + bE(Y ).

What good is this? Well, it’s a fundamental property of the expected value, and it makes
many computations easier.

(b) Recall that the variance of a random variable X is defined by Var(X) := E((X−E(X))2).
In class we showed that Var(X) = E(X2)− E(X)2. In this problem, we will prove a slightly
different formula. We already used this formula in class to prove that the variance of the
binomial random variable B(n, p) equals np(1 − p). The formula is a bit funny, but it’s the
easiest proof that I know.



First recall (as we showed in class) that

E((X − E(X))2) = E(X2 − 2XE(X) + E(X)2)

= E(X2)− E(2E(X)X) + E(E(X)2)

= E(X2)− 2E(X) · E(X) + E(X)2

= E(X2)− E(X)2.

Here we used the fact that 2E(X) and E(X)2 are constants. Next observe that

E(X(X − 1)) + E(X)− E(X)2 = E(X2 −X) + E(X)− E(X)2

= E(X2)− E(X) + E(X)− E(X)2

= E(X2)− E(X)2.

We conclude that the two formulas are equal, as desired.

3. An Urn Problem. An urn contains 6 red balls and 3 green balls. You reach in and grab
4 balls at random. (Assume that each outcome is equally likely.) Let X be the number of red
balls that you get.

(a) Compute the probability P (X = k) for each possible value of k.
(b) Compute the expected number of red balls, E(X).
(c) Compute the variance Var(X). You can use the formula E((X−E(X))2) or the formula

E(X2)− E(X)2. Recall that E(X2) can be expressed as
∑

k k
2 · P (X = k).

(a) There are 6 + 3 = 9 balls in an urn. We reach in and grab 4 of them. The number

of different outcomes is
(
9
4

)
= 126. We assume that every outcome is equally likely, with

probability 1/126. Thus to compute the probability of getting k red balls we just need to
count the number of ways we can get k red balls. This number equals(

6

k

)(
3

4− k

)
because there are

(
6
k

)
ways to choose the k red balls and

(
3

4−k
)

ways to choose the remaining
4− k green balls. Thus we have

P (X = k) =

(
6
k

)(
3

4−k
)(

9
4

) =

(
6
k

)(
3

4−k
)

126
.

We can list these probabilities in a table:

k 0 1 2 3 4

P (X = k) 0
126

6
126

45
126

60
126

15
126

Observe that the probabilities add to 1. [Remark: We could alternatively analyze this experiment
by recording the order in which we choose the 4 balls. In that case the size of the sample space is
9 · 8 · 7 · 6 = 3024. The calculations are a bit harder, but I guarantee you’ll end up with the same
probabilities. So why not do it the easy way?]



(b) The expected number of red balls is

E(X) =
∑
k

k · P (X = k)

= 0 · 0

126
+ 1 · 6

126
+ 2 · 45

126
+ 3 · 60

126
+ 4 · 15

126

=
0 · 0 + 1 · 6 + 2 · 45 + 3 · 60 + 4 · 15

126

=
336

126

=
8

3
.

Does that make sense? Yes. The ratio of red balls in the urn is 6
6+3 = 6

9 = 2
3 . So if we reach

in and grab 4 balls, we expect 2
3 · 4 = 8

3 of them to be red. This means we probably didn’t
make a mistake in our computation.

(c) To compute the variance we first need to know E(X2). We can think of this as the expected
value of a different probability distribution:

k 0 1 4 9 16

P (X2 = k) 0
126

6
126

45
126

60
126

15
126

We don’t really care about the distribution of X2; the only reason we computed it is because
it gives us a shortcut to the variance. We have

E(X2) = 0 · 0

126
+ 1 · 6

126
+ 4 · 45

126
+ 9 · 60

126
+ 16 · 15

126
=

996

126
=

23

3

and therefore

Var(X) = E(X2)− E(X)2 =
23

3
−
(

8

3

)2

=
5

9
≈ 0.56.

It’s harder to know if this is the correct answer because variance has less intuitive content
than expected value. However, I looked up the formula for the variance of a hypergeometric
distribution and verified that 5

9 is indeed the correct answer. (Look it up and see.)

4. The Central Limit Theorem. Flip a fair coin 2n times and let X be the number of
heads you get. In 1733, Abraham de Moivre observed that for large n and for small k, the
probability P (X = n+ k) is approximately

1√
πn

e−k
2/n.

Use this to estimate the probability of getting heads between 2490 and 2510 times in 5000
flips of a fair coin. [Hint: Integrate.]

If we flip a fair coin 5000 times then the probability of getting heads 2500 + k times is exactly(
5000

2500+k

)
25000

,

as you know. Thus the probability of getting between 2490 and 2510 heads (inclusive) is

10∑
k=−10

(
5000

2500+k

)
25000



This sum is impossible to compute by hand because the numerators and denominators of these
fractions all have more than 1500 digits! De Moivre’s approximation tells us that(

5000
2500+k

)
25000

≈ 1√
2500π

e−k
2/2500,

so the probability is approximated by an integral:

10∑
k=−10

(
5000

2500+k

)
25000

≈
∫ 10.5

−10.5

1√
2500π

e−k
2/2500 dk.

This may not seem helpful, but de Moivre was very clever and he was able to compute this
integral by hand using Taylor series and other tricks. We won’t compute it by hand. I’ll put
it in my computer and just tell you that the integral evaluates to∫ 10.5

−10.5

1√
2500π

e−k
2/2500 dk = 0.233522.

And that’s pretty good because the exact value of the probability is

10∑
k=−10

(
5000

2500+k

)
25000

= 0.233518.

In summary, the probability of getting between 2490 and 2510 heads in 5000 flips of a fair
coin is 23.35%.

Here is a picture of the (discrete) binomial distribution and the (continuous) normal distri-
bution from this problem. (Outside of the displayed range the probability is essentially zero.)
The distributions are so close together I can barely see the difference. Good job, de Moivre!


