Math 230 D Fall 2015
Homework 2 Drew Armstrong

Problem 1. Logical Analysis.

(a) Let @ and R be logical statements. Use a truth table to prove that =(QV R) is logically
equivalent to =@Q A —R. [This is called de Morgan's law.]

(b) Let P, @, and R be logical statements. Use a truth table to prove that (Q V R) = P
is logically equivalent to (Q = P) A (R = P).

(¢) Apply the principles from (a) and (b) to prove that for all integers m and n we have

“mn is even” <= “m is even or n is even”.

[Hint: Let P =“mmn is even”, Q =“m is even”, and R =“n is even”. Use part (a) for
the “=" direction and use part (b) for the “«<” direction.]

Here is the truth table for part (a):
Q RIQVR ~(QVR) -Q -R (-QA-R)

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Note that the third and sixth columns are equal. And here is the truth table for part (b):
QVR (QVR)=P Q=P R=P (Q=P)N(R=P)

TN NNNTY
TENNTT N RO
NN N
e R e B B B B
NN NN
e R IS T B B M B
eI B B B B B B
NSNS

Note that the fifth and eighth columns are equal. Finally, here is the proof of part (c):

Proof. Let m,n € Z and consider the statements P =“mn is even”, () =“m is even”, and
R =“n is even”. We will prove that P < (Q V R), in two separate steps.

First we will prove that P = (Q V R). To do this we will rewrite the statement using the
contrapositive and de Morgan’s law to get

P = (QVR),
-(QV R) = P,
(=Q N —=R) = —P.

This last statement says that “m and n are both odd” = “mn is odd”. To prove this, assume
that m and n are both odd, i.e., assume that there exist integers k, ¢ € Z such that m = 2k+1
and n = 2¢ + 1. In this case we have

mn = (2k+1)(20+ 1)
=4kl +2k+20+1
=22kl +k+0)+ 1,



which is odd as desired.

Next we will prove that (Q V R) = P. By part (b) it is enough to prove the equivalent
statment (QQ = P) A (R = P). In other words, we have to show that “m is even” = “mn
is even” and “n is even” = “mn is even”. So assume that m is even, i.e., assume that there
exists an integer k € Z such that m = 2k. Then we have mn = (2k)n = 2(kn), hence mn
is even. Similarly, assume that n is even so there exists £ € Z with n = 2¢. Then we have
mn = m(2¢) = 2(m{), hence mn is even. This proves the result.

Since we have separately shown that P = (Q V R) and (Q V R) = P, we conclude that
P < (QV R), as desired. O

Problem 2. Absolute Value. Given an integer a we define its absolute value as follows:

a ifa>0
la] :=< 0 ifa=0
—a ifa<O
Prove that for all integers a and b we have |ab| = |a||b|. [Hint: Your proof will break into at

least five separate cases. You may assume without proof the properties (—a)(—b) = ab and
(—a)b = a(—b) = —(ab); we'll prove them later.]

Proof. Consider any integers a,b € Z. We want to show that |ab| = |a||b]. We will break the
proof into five cases.

Case 1: If at least one of a or b is zero then we have ab = 0, and hence |ab| = 0. On the
other hand we also know that at least one of |a| or |b] is zero, hence |a||b] = 0. We conclude
that |ab| = |al|b].

Case 2: If a > 0 and b > 0 then ab > 0, so we have |ab| = ab. On the other hand we have
la| = a and |b| = b, hence |a||b] = ab. We conclude that |ab| = |al|b|.

Case 3: If a > 0 and b < 0 then ab < 0, so we have |ab| = —(ab). On the other hand, we
have |a| = a and |b| = —b, hence |a||b] = a(—b). Since we have assumed that a(—b) = —(ab),
this implies that |ab| = |al|b].

Case 4: If a < 0 and b > 0 then ab < 0, so that |ab| = —(ab). On the other hand, we have
la| = —a and |b| = b, so that |a||b] = (—a)b. Since we have assumed that (—a)b = —(ab) this
implies that |ab| = |a||b].

Case 5: If @ < 0 and b < 0 then ab > 0, so that |ab|] = ab. On the other hand, we have
la| = —a and |b| = —b, hence |a||b] = (—a)(—b). Since we have assumed that (—a)(—b) = ab,
this implies that |ab| = |a|b].

O

[Remark: You've probably used the identity |ab] = |a||b] many times, but maybe you've never
thought about why it's true. On HW3 you will finish the job by proving that (—a)b = a(—b) =
—(ab) and (—a)(—b) = ab directly from the definition of the integers.]

Problem 3. Divisibility. Given integers m and n we will write “m|n” to mean that “there
exists an integer k such that n = mk” and when this is the case we will say that “m divides
n” or “n is divisible by m”. Now let a, b, and ¢ be integers. Prove the following properties.

(a) If a|b and b|c then alc.
(b) If alb and alc then a|(bz + cy) for all integers = and y.



(c) If alb and bla then a = +b. [Hint: Use the fact that uv = 0 implies u = 0 or v = 0.]
(d) If alb and b is nonzero then |a| < |b|. [Hint: Use the result of Problem 2.]

Proof. For part (a), assume that a|b and b|c, i.e., assume that there exist integers k,¢ € Z
such that b = ak and ¢ = bf. Then we have

c=bl = (ak)l = a(k?),
hence a|c, as desired.

For part (b), assume that a|b and a|c, i.e., assume that there exist integers k, ¢ € Z such
that b = ak and ¢ = af. Then for any integers x,y € Z we have

bx + cy = (ak)x + (al)y = a(kx) + a(ly) = a(kz + Ly),

hence a|(bzx + cy) as desired.
For part (c) assume that a|b and bla, i.e., assume that there exist integers k,¢ € 7Z such
that b = ak and a = bf. Then we have

a="bl

a = (ak)l

a = a(kl)
0=a(kl)—a
0=a(kl—1).

If @ = 0 then we must have b = 0 and hence a = +b as desired. If a # 0 then the equation
0 = a(kf — 1) implies that k¢ — 1 = 0, hence k¢ = 1. Since k and ¢ are integers, this can only
happen when k = ¢ = +1. We conclude that a = bk = +b as desired.

For part (d), let b # 0 and assume that alb, i.e., assume that there exists k € Z such that
b = ak. Note that k& # 0 since otherwise we would have b = 0, which is a contradiction. Since
k is a nonzero integer we must have 1 < |k|. Then multiplying both sides by |a| and using the
result of Problem 2 gives

1 < |kl
la| < |al|k|
la| < |ak|
la| < [b],
as desired. O

[Remark: Some of the steps here, such as the fact that 1 < |k| and the implication “1 < |k|” =

“la] < |al|k]”, were not fully explained. We'll fill in the gaps later when we see the formal definition
of Z.]

Problem 4. The Square Root of 5. Prove that v/5 is not a ratio of integers, in two steps.

(a) First prove the following lemma: Let n be an integer. If n? is divisible by 5, then so
is n. [Hint: Use the contrapositive and note that there are four separate ways for an
integer to be not divisible by 5. Sorry it’s a bit tedious; we will find a better way to
do this later.]

(b) Use the method of contradiction to prove that /5 is not a ratio of integers. Explicitly
quote your lemma in the proof. [Hint: Your proof should begin as follows: “Assume
for contradiction that /5 is a ratio of integers. In this case, ...”]

Lemma: Let n be an integer. Then we have “5|n? = 5|n?”.



Proof. We prove the contrapositive statement “5 fn = 5 /n?”. So assume that 5 does not
divide n. In this case we want to show that 5 does not divide n?. There are four cases.
Case 1: If n = 5k + 1 for some k € Z then we have

n? = (5k + 1) = 25k% + 10k + 1 = 5(5k* + 2k) + 1,

2 is not divisible by 5.

hence n

Case 2: If n = 5k + 2 for some k € Z then we have
n? = (5k + 2)% = 25k + 20k + 4 = 5(5k* + 4k) + 4,

2 is not divisible by 5.

hence n

Case 3: If n = 5k + 3 for some k € Z then we have
n? = (5k + 3)% = 25k + 30k + 9 = 5(5k? + 6k + 1) + 4,

2 is not divisible by 5.

hence n

Case 4: If n = 5k + 4 for some k € Z then we have
n? = (5k +4)% = 25k* + 40k + 16 = 5(5k* + 8k + 3) + 1,

hence n? is not divisible by 5. (]

[Remark: Here we used the fact that remainders are unique. For example, if n? = 5(something)+4,
this means that the remainder of n? mod 5 is 4. In particular, the remainder is not zero. We
haven't proved uniqueness of remainders but we will do soon.]

Theorem: /5 ¢ Q.

Proof. Assume for contradiction that NGR= Q. In this case we can write NG a/b where a
and b are integers with no common factor except +1. Square both sides to get

V5 =a/b

5= a®/b?
50 = a.
Since a? is a multiple of 5 the lemma implies that a = 5k for some k € Z. Now substitution
gives
502 = a?
50% = (5k)?
5b? = 25k
b? = 5k2.

Since b? is a multiple of 5 the lemma implies that b = 5¢ for some ¢ € Z. But now we see that
5 is a common factor of a and b, which contradicts the fact that they have no common factor
except +1. This contradiction implies that our original assumption (i.e., that v/5 € Q) was
false. O

[Remark: In this proof we assumed that every element of Q can be written in “lowest terms”,
which we haven't proved yet. We will ]



