Math 230 E Homework 1

Problem 1. Proposition I.5 in Euclid has acquired the name *pons asinorum*, which translates as "bridge of asses" or "bridge of fools". Apparently, many students never got past this proposition. (I would say that the *pons asinorum* in today's curriculum is addition of fractions.) The proposition says the following: Consider a triangle $\triangle ABC$. If the side lengths \overline{AB} and \overline{AC} are equal (i.e. the triangle is *isoceles*), then the angles $\angle ABC$ and $\angle ACB$ are equal.

Your assignment is to look up Euclid's proof and tell it to me.

Problem 2. Prove that the interior angles of any triangle sum to 180° . You may use the following two facts without justification. Fact 1: Given a line ℓ and a point p not on ℓ , it is possible to draw a line through p parallel to ℓ . Fact 2: If a line falls on two parallel lines, then the corresponding angles are equal, as in the following figure.

Problem 3. Prove Thales' Theorem, which says the following. Consider a triangle $\triangle ABC$ inscribed in a circle. If line segment BC is a diameter of the circle, then angle $\angle BAC$ is a right angle. You may quote the results from Problems 1 and 2.

Problem 4. The dot product of vectors $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ is defined by $\mathbf{u} \cdot \mathbf{v} := u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$. The length $\|\mathbf{u}\|$ of a vector \mathbf{u} is defined by $\|\mathbf{u}\|^2 := \mathbf{u} \cdot \mathbf{u}$.

- (a) Prove the formula $\|\mathbf{u} \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 2(\mathbf{u} \cdot \mathbf{v}).$
- (b) Use this formula together with the 2D Pythagorean Theorem **and its converse** to prove the following statement:

"the vectors \mathbf{u} and \mathbf{v} are perpendicular if and only if $\mathbf{u} \cdot \mathbf{v} = 0$."

[Hint: Where is the triangle? Recall that you must prove both directions of the *if and only if* statement separately.]

Problem 5. Use vectors to give an analytic proof of Thales' Theorem. [Hint: You may assume that your circle is the unit circle in the Cartesian plane. You may assume that B = (-1, 0), C = (1, 0), and $A = (\cos \theta, \sin \theta)$ for some angle θ . Consider the vectors $\mathbf{u} = A - B$ and $\mathbf{v} = A - C$. Compute the dot product $\mathbf{u} \cdot \mathbf{v}$.]

