June 22 - June 28

We have finished discussing "least squares regression", which is one of the most common applications of Linear Algebra.

There is one more application of Linear Algebra I want to discuss before sending you out into the world. I'll call it
"spectral analysis"
and I'll also introduce this topic with an example.

Motivating Example: You may have heard of the "Fibonacci Sequence"

$$
1,1,2,3,5,8,13,21,34,55 \text {, etc. }
$$

If we write f_{n} for the $n^{\text {th }}$ Fibonace; number then the sequence is defined by the "initial conditions"

$$
f_{0}=0 \quad \& \quad f_{1}=1
$$

and the "recurrence equation"

$$
f_{n+2}=f_{n+1}+f_{n} \text { for all } n \geqslant 0
$$

For example, we have

$$
\begin{aligned}
& f_{2}=f_{1}+f_{0}=1+0=1 \\
& f_{3}=f_{2}+f_{1}=1+1=2 \\
& f_{4}=f_{3}+f_{2}=2+1=3 \\
& f_{5}=f_{4}+f_{3}=3+2=5, \text { etc. }
\end{aligned}
$$

Our goal today is to find a "closed formula for the $n^{\text {th }}$ Fibonacci $n u m b e r$:

$$
f_{n}=?
$$

The answer is very hard to guess, but we can compute it rather easily using a trick and some Linear Algebra. The trick is to rewrite the recurrence equation as a system of two linear equations

$$
\left\{\begin{array}{l}
f_{n+2}=f_{n+1}+f_{n} \\
f_{n+1}=f_{n+1}
\end{array}\right.
$$

The second equation looks quite useless but it's not because it allows us to express the recurrence as a matrix equation

$$
\binom{f_{n+2}}{f_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n+1}}{f_{n}}
$$

To save same space we will introduce the notations

$$
\vec{f}_{n}=\binom{f_{n+1}}{f_{n}} \quad \& \quad T=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),
$$

Then we can express the initial conditions and the recurrence as follows:

- $\vec{f}_{0}=\binom{1}{0}$
- $\stackrel{\rightharpoonup}{f}_{n+1}=T \stackrel{\rightharpoonup}{f}_{n}$ for all $n \geqslant 0$.

Now we're ready to apply Linear Algebra. By computing the first few vectors \vec{f}_{n},

$$
\begin{aligned}
& \vec{f}_{1}=T \vec{f}_{0} \\
& \overrightarrow{f_{2}}=T \vec{f}_{1}=T\left(T \vec{f}_{0}\right)=(T T) \vec{f}_{0}=T^{2} \vec{f}_{0} \\
& \overrightarrow{f_{3}}=T \vec{f}_{2}=T\left(T^{2} \vec{f}_{1}\right)=\left(T T^{2}\right) \vec{f}_{0}=T^{3} \overrightarrow{f_{0}}
\end{aligned}
$$

we see that the $n^{\text {th }}$ vector is given by

$$
\begin{aligned}
\vec{f}_{n} & =T^{n} \vec{f}_{0} \\
\binom{f_{n+1}}{\left(f_{n}\right)} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}\binom{1}{0}
\end{aligned}
$$

and we really only care about the and entry of this vector, which is the $n^{\text {th }}$ Fibonacci number f_{n}.

Great, now let's compute it. HOW?
This is where the "spectral analysis" comes in. We make the following fundamental definition.

* Definition: We will say That a number λ is an eigenvalue for the matrix T If there exists a nonzero vector $\vec{x} \neq \overrightarrow{0}$ such that

$$
T \stackrel{\rightharpoonup}{x}=\lambda \stackrel{\rightharpoonup}{x}
$$

and in this case we will say that $\vec{\gamma}$ is a λ-eigenvector of T.

The whole reason for this definition is the following observation: If $\vec{\chi}$ is a λ-eigenvector for T then we have

$$
\begin{aligned}
T^{2} \vec{x} & =T(T \vec{x}) \\
& =T(\lambda \vec{x}) \\
& =\lambda(T \vec{x}) \\
& =\lambda(\lambda \vec{x})=\lambda^{2} \vec{x},
\end{aligned}
$$

$$
\begin{aligned}
T^{3} \stackrel{\rightharpoonup}{x} & =T\left(T^{2} \stackrel{\rightharpoonup}{x}\right) \\
& =T\left(\lambda^{2} \stackrel{\rightharpoonup}{x}\right) \\
& =\lambda^{2}(T \vec{x}) \\
& =\lambda^{2}(\lambda \stackrel{\rightharpoonup}{x})=\lambda^{3} \vec{x},
\end{aligned}
$$

and in general we have

$$
T^{n} \stackrel{\rightharpoonup}{x}=\lambda^{n} \stackrel{\rightharpoonup}{x}
$$

So if $\vec{f}_{0}=(1,0)$ were an eigenvector of T we would be done. Unfortunately it's not:

$$
T \vec{f}_{0}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{1}{1},
$$

which is not of the form $\lambda\binom{1}{0}$. But that's okay. Here's the big idea.

* Idea of Spectral Analysis:

If we can express the initial condition \vec{f}_{0} as a linear combination of eigenvectors for the transition matrix T, then we will be done.

Indeed, suppose that $\vec{u} \& \vec{v}$ are eigenvectors for T with

$$
T \stackrel{\rightharpoonup}{u}=\lambda \stackrel{\rightharpoonup}{u} \quad \& \quad T \stackrel{\rightharpoonup}{v}=\mu \stackrel{\rightharpoonup}{v},
$$

for some eigenvalues $\lambda \& \mu$ and suppose that we can write

$$
\overrightarrow{f_{0}}=a \vec{u}+b \vec{v}
$$

for some numbers a \& b. Then we will have

$$
\begin{aligned}
T^{n} \vec{f}_{0} & =T^{n}(a \stackrel{\rightharpoonup}{u}+b \stackrel{\rightharpoonup}{v}) \\
& =a\left(T^{n} \vec{u}\right)+b\left(T^{n} \vec{v}\right) \\
& =a \lambda^{n} \vec{u}+b \mu^{n} \stackrel{\rightharpoonup}{v}
\end{aligned}
$$

and the problem will be solved! Thus we have reduced the problem to:

- findining enough eigenvectors for T
- expressing the initial condition \vec{f}_{0} in terms of them.

Right now I am introducing the idea of "spectral analysis" through a motivational example.

Recall the Fibonacci numbers

$$
0,1,1,2,3,5,8,13,21,34,55, \ldots
$$

These are defined by initial conditions

$$
f_{0}=0 \quad \& \quad f_{1}=1
$$

and by the recurrence equation

$$
f_{n+2}=f_{n+1}+f_{n} \text { for } n \geqslant 0 \text {. }
$$

Our goal is to "Solve" this recurrence, i.e., to find a "closed formula" for the $n^{\text {th }}$ Fibonacci number. The answer is very hard to guess so it is preferable to develop a mechanical technique.

To do this we will define the vectors

$$
\stackrel{\rightharpoonup}{f}_{n}:=\binom{f_{n+1}}{f_{n}}
$$

consisting of two consecutive Fibonacci numbers and then observe that the initial conditions and recurrence can be rewritten in terms of matrix algebra as

$$
\vec{f}_{0}=\binom{1}{0} \quad \& \quad \vec{f}_{n+1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \vec{f}_{0} \text { for } n \geqslant 0 \text {. }
$$

If we define $T=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ Then we can solve explicitly for \vec{F}_{n} :

$$
\stackrel{\rightharpoonup}{f}_{n}=T^{n} \stackrel{\rightharpoonup}{f_{0}}
$$

Now the whole problem is to investigate the powers T^{n} of the matrix T, and the key tools for doing this are called eigenvalues \& eigenvectors:

* Consider a nenzero vector $\vec{x} \neq \overrightarrow{0}$. We say that \vec{x} is an eigenvector for the matrix T if there exists some number λ such that

$$
T \stackrel{\rightharpoonup}{x}=\lambda \stackrel{\rightharpoonup}{x}
$$

In this case we say that λ is the eigenvalue corresponding to the eigenvector \vec{x}. (sometimes we say that $\vec{\lambda}$ is a " λ-eigenvector" of T.)

A The idea of spectral analysis, is to express the initial condition \vec{f}_{0} as a linear combination of eigenvectors for the transition matrix.

I'll show you how to compute the eigenvectors in a bit. Right now let me just tell you the answer.

If we define the numbers

$$
\varphi_{1}=\frac{1+\sqrt{5}}{2} \& \varphi_{2}=\frac{1-\sqrt{6}}{2}
$$

then I claim [just believe me] that.

$$
\begin{aligned}
& \therefore\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{\varphi_{1}}{1}=\varphi_{1}\binom{\varphi_{1}}{1} \\
& \therefore\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{\varphi_{2}}{1}=\varphi_{2}\binom{\varphi_{2}}{1} \\
& \therefore\binom{1}{0}=\frac{1}{\sqrt{5}}\binom{\varphi_{1}}{1}-\frac{1}{\sqrt{5}}\binom{\varphi_{2}}{1}
\end{aligned}
$$

And then the answer to our problem is immediate. We have

$$
\begin{aligned}
\binom{f_{n+1}}{f_{n}} & =\vec{f}_{n}=T^{n} \stackrel{\rightharpoonup}{f}_{0} \\
& =T^{n}\left(\frac{1}{\sqrt{5}}\binom{\varphi_{1}}{1}-\frac{1}{\sqrt{5}}\binom{4_{2}}{1}\right) \\
& =\frac{1}{\sqrt{5}} T^{n}\binom{\varphi_{1}}{1}-\frac{1}{\sqrt{5}} T^{n}\binom{\varphi_{2}}{1} \\
& =\frac{1}{\sqrt{5}} \varphi_{1}^{n}\binom{\varphi_{1}}{1}-\frac{1}{\sqrt{5}} \varphi_{2}^{n}\binom{\varphi_{2}}{1} .
\end{aligned}
$$

Then comparing the second entry in each vector gives us the desired formula for the $n^{\text {th }}$ Fibonacci number:

$$
\begin{aligned}
f_{n} & =\frac{1}{\sqrt{5}} \varphi_{1}^{n}-\frac{1}{\sqrt{5}} \varphi_{2}^{n} \\
& =\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}(\sqrt{0})
\end{aligned}
$$

I consider this formula pretty amazing because it doesn't even lock like a whole number. Let's chock a couple of cases:

$$
\begin{aligned}
& \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{0}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{0} \\
& =\frac{1}{\sqrt{5}} \cdot 1-\frac{1}{\sqrt{5}} \cdot 1=0=f_{0} \\
& \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{1} \\
& =\frac{1}{2 \sqrt{5}}[(x+\sqrt{5})-(x-\sqrt{5})] \\
& =\frac{1}{2 \sqrt{5}}[2 \sqrt{5}]=1=f_{1}
\end{aligned}
$$

OK, that's good enough for me II.
What remains to do?
I need to show you how to compute the eigenvalues \& eigenvectors of a matrix if you don't know them already. Actually, this is pretty hard in general so I'll just show you how to de it for 2×2 matrices.
So let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and suppose that λ is eigenvalue of A. This means that there exists a vector $\vec{x} \neq \vec{\Delta}$ such that

$$
\begin{gathered}
A \vec{x}=\lambda \vec{x} \\
A \vec{x}=\lambda I_{2} \vec{x} \\
A \vec{x}-\lambda I_{2} \vec{x}=\overrightarrow{0} \\
\left.A-\lambda I_{2}\right) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

since $\vec{x} \neq \overrightarrow{0}$ this equation tells me that the matrix $A-\lambda I_{2}$ has a nan-trivial column relation, so it is not invertible.

If $A-\lambda I_{2}$ were invertible. Then its inverse would be given by the formula

$$
\begin{aligned}
\left(A-\lambda I_{2}\right)^{-1} & =\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]^{-1} \\
& =\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)^{-1} \\
& =\frac{1}{(a-\lambda)(d-\lambda)-b c}\left(\begin{array}{cc}
d-\lambda & -b \\
-c & a-\lambda
\end{array}\right)
\end{aligned}
$$

But since we know that $A-\lambda I_{2}$ is not invertible, it must be the case that

$$
\begin{aligned}
& (a-\lambda)(d-\lambda)-b<=0 \\
& a d-a \lambda-d \lambda+\lambda^{2}-b c=0 \\
& \lambda^{2}-(a+d) \lambda+(a d-b c)=0
\end{aligned}
$$

This is called the characteristic equation of the matrix A, Its solutions λ are precisely the eigenvalues of A, and we can compute them using the quadratic formula:
(*) $\lambda=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-k c)}}{2}$

After finding the eigenvalues from (*) it is easy to find the corresponding eigenvectors by solving the linear system

$$
\left(A-\lambda I_{2}\right) \stackrel{\rightharpoonup}{x}=\overrightarrow{0}
$$

for each eigenvalue λ.

Now: Eivalues \& E.vectors
Consider the matrix $A=\left(\begin{array}{ll}.8 & .3 \\ .2 & 17\end{array}\right)$.
Using a computer we find

$$
\left.\begin{array}{l}
A^{2}=\left(\begin{array}{ll}
.70 & .45 \\
.30 & .55
\end{array}\right) \\
A^{3}=\left(\begin{array}{ll}
.650 & .525 \\
.350 & .475
\end{array}\right) \\
A^{4}
\end{array}\right)=\left(\begin{array}{ll}
.6250 & 0.5622 \\
.3750 & 0.4375
\end{array}\right)
$$

It seems like

$$
\lim _{n \rightarrow \infty} A^{n}=\left(\begin{array}{ll}
.6 & .6 \\
.4 & .4
\end{array}\right)
$$

What's going on here?

Consider a simple model. A species of bird lives in Canada and the USA Every year there is a migration

Assume no birds are barn or die.
In year n there are
C_{n} birds in CAN.
u_{n} birds in USA

How we $\binom{c_{n}}{u_{n}}$ and $\binom{c_{n+1}}{u_{n+1}}$ related?
Of the c_{n} birds in CAN now, $8 c_{n}$ stay and $.2 c_{n}$ move of the u_{n} birds in U5A now, Tun stay and. Bun move.

Hence

$$
\begin{aligned}
& c_{n+1}=.8 c_{n}+.3 u_{n} \\
& u_{n+1}=.2 u_{n}+.7 u_{n}
\end{aligned}
$$

ie. $\quad\binom{c_{n+1}}{u_{n+1}}=\left(\begin{array}{rr}1 & 13 \\ 2 & 17\end{array}\right)\binom{c_{n}}{u_{n}}$

$$
\vec{v}_{n+1}=A \vec{v}_{n}
$$

Say \vec{V}_{n} is the state vector at time n Say A is the transition matrix Example
Start with $\vec{V}_{0}=\binom{10}{0}$

Then $\vec{V}_{1}=\left(\begin{array}{cc}.8 & .3 \\ 12 & .7\end{array}\right)\binom{10}{0}=\binom{8}{2}$

$$
\begin{aligned}
& \vec{v}_{2}=A \vec{v}_{1}=\left(\begin{array}{cc}
.8 & .3 \\
.2 & .7
\end{array}\right)\binom{8}{2}=\binom{7}{3} \\
& \vec{v}_{3}=A \vec{v}_{2}=\left(\begin{array}{cc}
.8 & .3 \\
.2 & .7
\end{array}\right)\binom{7}{3}=\binom{6.5}{3.5}
\end{aligned}
$$

Q: 6.5 birds?
A: Yes. Were just deding with probabilities.
In general we have

$$
\begin{aligned}
\vec{V}_{n} & =A \vec{V}_{n-1} \\
& =A A \vec{V}_{n-2} \\
& =A A A \vec{V}_{n-3} \\
& =A A A \cdots-A \vec{v}_{0} \\
& =A^{n} \vec{v}_{0}=\left(\begin{array}{ll}
8,3 \\
.2 & 17
\end{array}\right)^{n}\binom{10}{0}
\end{aligned}
$$

Big Idea: We will say state \vec{V} is an equilibrium of. the system if

$$
A \vec{v}=\vec{v}=1 \stackrel{\rightharpoonup}{v}
$$

An eigenvector with eigenvalue 1
If it exists, let's compute it
Let $\vec{v}=\binom{c}{u}$.
Then $A \vec{v}=\vec{r}$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{cc}
.8 & .3 \\
\hline 2 & .7
\end{array}\right)\binom{c}{u}=\binom{c}{n} . \\
& \Rightarrow \quad .8 c+.3 u=c \\
& \Rightarrow .2 c+.7 u=u . \\
& \Rightarrow-.2 c+.3 u=0
\end{aligned}
$$

velar $=\theta$. redundant. $\underbrace{\circ}$

$$
\begin{aligned}
& \Rightarrow \quad 3 u=.2 c \\
& 3 u=2 c \\
& \Rightarrow \quad u / c=2 / 3
\end{aligned}
$$

The 1 -eigenspace of A is the line

$$
\binom{c}{u}=t\binom{3}{2}
$$

In particular we hare

$$
A\binom{6}{4}=\binom{6}{4}
$$

6 birds in CAN
4 birds in usA is on equilibrium.

But we haven't yet explained why

$$
A^{n}\binom{10}{0} \rightarrow\binom{6}{4}
$$

as $n \longrightarrow \infty$
To do this we need the other eigenvalue.

The characteristic equation of $\left(\begin{array}{cc}18 & 3 \\ 2 & 7\end{array}\right)$ is

$$
\begin{aligned}
& (.8-\lambda)(.7-\lambda)-(.2)(.3)=0 \\
& .56-.8 \lambda-.7 \lambda+\lambda^{2}-.06=0 \\
& \lambda^{2}-1.5 \lambda+.5=0 \\
& 2 \lambda^{2}-3 \lambda+1=0
\end{aligned}
$$

Hence the eigenvalues are

$$
\begin{aligned}
\lambda & =\frac{3 \pm \sqrt{(-3)^{2}-4(1)(2)}}{2(2)}=\frac{3 \pm 1}{4} \\
& =1 \text { or } .5
\end{aligned}
$$

Let's compute the eigenvalues corresponding to eigenvalue. 5

$$
\begin{aligned}
&\left(\begin{array}{cc}
.8 & .3 \\
2 & .7
\end{array}\right)\binom{c}{u}=.5\binom{c}{u} \\
& \Rightarrow .8 c+.3 u=.5 c \\
& .2 c+.7 u=.54
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad .3 c+.3 u=0 \\
& \Rightarrow \quad c+u=0
\end{aligned}
$$

So the .5 -eigenspace" is the line

$$
\binom{c}{u}=t\binom{1}{-1}
$$

Picture:

Slogan: Once yon know the eigenvectors, you should express everything
in terms of them.

For example, let's express our initial state vector:

$$
\left(\begin{array}{cc}
1 & 0 \\
0
\end{array}\right)=2\binom{3}{2}+4\binom{1}{-1}
$$

Then we have

$$
\begin{aligned}
A^{n}\binom{10}{0} & =A^{n}\left[2\binom{3}{2}+4\binom{1}{-1}\right] \\
& =2 A^{n}\binom{3}{2}+4 A^{n}\binom{1}{-1} \\
& =2\binom{3}{2}+4\left(\frac{1}{2}\right)^{n}\binom{1}{-1} \\
& =\binom{6+4 / 2^{n}}{4-4 / 2^{n}}
\end{aligned}
$$

As $n \rightarrow \infty$ we have

$$
A^{n}\binom{10}{0} \rightarrow\binom{6+0}{4+0}=\binom{6}{4}
$$

Today: HW 8 Discussion
6.1.9. Assume that x is an vector of A with eivalue λ.
(a) Then x is also an eivector of A^{2} but with eivalue λ^{2}.

Proof: We have

$$
\begin{aligned}
A^{2} \vec{x}=A(A \vec{x}) & =A(\lambda \vec{x}) \\
& =\lambda A \vec{x}=\lambda \lambda \vec{x}==\lambda^{2} \vec{x}
\end{aligned}
$$

(b) Then x is also on eivector of A^{-1} (if A^{-1} exists), but with e.value $\lambda^{-1}=\frac{1}{\lambda}$

Prof: we have

$$
\begin{aligned}
\vec{x}=I \vec{x}=\left(A^{-1} A\right) \vec{x} & =A^{-1}(A \vec{x}) \\
& =A^{-1}(\lambda \vec{x}) \\
& =\lambda\left(A^{-1} \vec{\rightharpoonup}\right)
\end{aligned}
$$

Hence

$$
A^{-1} \vec{x}=\frac{1}{\lambda} \vec{x}
$$

(c) Then x is also on eivector of $A+I$ but with eivalue $\lambda+1$.

Proof: we have

$$
\begin{aligned}
(A+I) \vec{x} & =A \vec{x}+I \vec{x} \\
& =\lambda \vec{x}+1 \vec{x} \\
& =(\lambda+1) \vec{x}
\end{aligned}
$$

Problem A. 1.
Let P be the matrix that projects onto the line through $(\cos \theta, \sin \theta)$.

To save space, let's write $c=\cos \theta$ and

$$
S=\sin \theta
$$

The projection matrix is $P=\frac{\vec{a} \vec{a}}{\vec{a}^{T} \vec{a}}$ where $\vec{a}=\binom{c}{5}$

$$
\begin{aligned}
\Rightarrow p=\frac{\binom{c}{s}(c s)}{(c s)\binom{c}{s}} & =\frac{1}{c^{2}+s^{2}}\left(\begin{array}{ll}
c^{2} & c s \\
c 5 & s^{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
c^{2} & c s \\
c s & s^{2}
\end{array}\right)
\end{aligned}
$$

because $c^{2}+s^{2}=1$, ar you know.
The eivalues of P are given by

$$
\begin{gathered}
\left(c^{2}-\lambda\right)\left(s^{2}-\lambda\right)-(c s)(c s)=0 \\
c^{2} / s^{2}-c^{2} \lambda-s^{2} \lambda+\lambda^{2}-s^{2 / s^{2}}=0 \\
\lambda^{2}-\left(c^{2}+s^{2}\right) \lambda=0 . \\
\lambda^{2}-\lambda=0 \\
\lambda(\lambda-1)=0
\end{gathered}
$$

\Rightarrow Evalues are $\lambda=1$ and 0

Erectors? Claim:

You can easily check this.
Problem A. 2.
Q: What is the matrix of the reflection across the line through $(\cos \theta, \sin \theta)$?

Note that

$$
\left.\begin{array}{rl}
R \vec{b}=\vec{b}-2 \vec{e} & =\vec{b}-2\left(\overrightarrow{b_{0}}-p \vec{b}\right) \\
& =2 p \vec{b}-\vec{b} \\
& =2 P \vec{b}-I \vec{b} \\
& =(2 P-I) \vec{b} \\
\Rightarrow \vec{R} & =2 P-I \\
& =2\left(\begin{array}{ll}
c^{2} c s \\
c s & s^{2}
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
= & 2 c^{2}-1 \\
2 c s & 2 c s
\end{array}\right)
$$

Evalues of R ? Easy.
Suppose $P \vec{x}=\lambda \vec{x}$. Then

$$
\begin{aligned}
R \stackrel{\rightharpoonup}{x} & =(2 P-I) \vec{x} \\
& =2 P \vec{x}-I \vec{x} \\
& =2 \lambda \vec{x}-\vec{x} \\
& =(2 \lambda-1) \vec{x}
\end{aligned}
$$

\Rightarrow Erectors of R the some as for P, but the Ervalues have changed from λ to $2 \lambda-1$
P has evalus 1 and 0 .
R has evalues $2(1)-1$ and $2(0)-1$ 1 and -1

Picture:

Problem 6.1.14. Find the Eivalues of the rotation matrix

$$
Q=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Characteristic Equation

$$
\begin{aligned}
& (c-\lambda)(c-\lambda)-s(-s)=0 \\
& c^{2}-2 c \lambda+\lambda^{2}+s^{2}=0 \\
& \lambda^{2}-2 c \lambda+\left(c^{2}+s^{2}\right)=0 \\
& \lambda-2 c \lambda+1=0 \\
& \lambda=2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4} \\
& =\frac{2 \cos \theta \pm \sqrt{4\left(\cos ^{2} \theta-1\right)}}{2} \\
& =\frac{2 \cos \theta \pm \sqrt{4\left(-\sin ^{2} \theta\right)}}{2} \\
& =\frac{2 \cos \theta \pm 2 \sqrt{-1} \sin \theta}{2} \\
& =\frac{\cos \theta \pm \sqrt{-1} \sin \theta}{}
\end{aligned}
$$

No REAL Eigenvalues unless $\sin \theta=0$

This is the meaning of complex eigenvalues:
If 2×2 matrix A has complex eigenvalues, then it has a tendency to rotate.

If A is the transition matrix of a dynamical system, then the system will oscillate.

Today: Phase Portraits
Recall the birds

and their transition matrix

$$
A=\left(\begin{array}{rr}
\cdot 8 & 3 \\
2 & \cdot 7
\end{array}\right)
$$

If we let $C_{n}=H$ birds in CAN at year n $u_{n}=H$ birds in USA at year n.

Then we have.

$$
\begin{aligned}
\binom{c_{n}}{u_{n}} & =A\binom{c_{n-1}}{u_{n-1}} \\
& =A A \cdot\binom{c_{n-2}}{u_{n-2}} \\
& =A A \cdots \cdots\binom{c_{0}}{u_{0}} \\
& =A^{n}\binom{c_{0}}{u_{0}}
\end{aligned}
$$

To solve this system, ie, to find formulas for $\left(c_{n}, u_{n}\right)$ in terms of $\left(c_{0}, u_{0}\right)$, we must compute the eigenvalues/eigenveitors.

The eivalues ore 1 and 5 .
The e.vectors are

$$
A t\binom{3}{2}=1 \cdot t\binom{3}{2} \& A t\binom{1}{-1}=.5 \cdot t\binom{1}{-1}
$$

Picture:

This picture tells us a lat.
suppose we start with $\left(c_{0}, u_{\Delta}\right)=(10,0)$.
This can be written in terms of eigenvectors as

$$
\begin{aligned}
\binom{10}{0} & =2\binom{3}{2}+4\binom{1}{-1} \\
& =\binom{6}{4}+\binom{4}{-4}
\end{aligned}
$$

Then we have

$$
\binom{c_{n}}{u_{n}}=A^{n}\binom{10}{0}=A^{n}\left[\binom{6}{4}+\binom{4}{-4}\right]
$$

$$
\begin{aligned}
& =A^{n}\binom{6}{4}+A^{n}\binom{4}{-4} \\
& =1^{n}\binom{6}{4}+\left(\frac{1}{2}\right)^{n}\binom{4}{-4} \\
& =\binom{6+4 / 2^{n}}{4-4 / 2^{n}}
\end{aligned}
$$

At each step, the state halves in the $(1,-1)$ direction and stags the same in the $(3,2)$ direction.

A general trajectory.

So the matrix A^{∞} is a projection onto the line $t(3,2)$, but at a strange angle (i.e. not 90°).

In fact, $A^{\infty}=\left(\frac{.6 \cdot 6}{.4 .4}\right)$
The orthogonal projection would be

$$
P=\frac{\binom{3}{2}(327}{(32)\binom{3}{2}}=\frac{1}{13}\left(\begin{array}{ll}
9 & 6 \\
6 & 4
\end{array}\right) \neq A^{\infty} .
$$

Note: A^{∞} has the some eivectors but with eivalines $1^{\infty}=1$ and $(.5)^{\infty}=0$

Q: What if we had a matrix with this elgen-information:

This is called ai "phase portrait" It shows us the typical trajectories.

The evalues/eivectors determine the behavior of the system.

Other Possibilities: $\quad \lambda_{1}>\lambda_{2}>1$

$$
\lambda_{1}=\lambda_{2}>1
$$

Expands evenly in all directions

$$
0<\lambda_{1}<\lambda_{2}<1
$$

What if λ_{1}, λ_{2} are complex? Then the system will oscillate

$$
\left|\lambda_{1}\right|=\left|\lambda_{2}\right|<1
$$

$$
\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1
$$

closed
orbits

$$
\left|\lambda_{1}\right|=\left|\lambda_{2}\right|>1
$$

Today: The phase portrait of fibonacci numbers.

Recall the Fibonacci numbers

$$
0,1,1,2,3,5,8,13,21,34,55,89
$$

They are defined by initial conditions

$$
\binom{F_{1}}{F_{0}}=\binom{1}{0}
$$

and seconl-order recurrence

$$
F_{n+2}=F_{n+1}+F_{n} \text { for all } n \geqslant 0
$$

which we can write as a 2×2 matrix equation (dynamical system)

$$
\binom{F_{n+2}}{F_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{F_{n+1}}{F_{n}}
$$

If we let $\vec{v}_{n}=\binom{F_{n+1}}{F_{n}}$ then we can tronslate this as:

Initial condition $\vec{V}_{0}=\binom{1}{0}$
Recurrence $\vec{V}_{n+1}=A \vec{V}_{n}$ for all $n \geqslant 0$,
where $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
Problem: solve the system.
Compute eigenvalues.

$$
\begin{aligned}
& (1-\lambda)(0-\lambda)-1 \cdot 1=0 \\
& -\lambda+\lambda^{2}-1=0 \\
& \lambda^{2}-\lambda-1=0 \\
& \lambda=\frac{1 \pm \sqrt{(-1)^{2}-4(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Call these $\alpha=\frac{1+\sqrt{5}}{2}$

$$
\beta=\frac{1-\sqrt{5}}{2}
$$

and observe that $\alpha^{2}-\alpha-1=0$

$$
\begin{aligned}
\beta^{2}-\beta-1 & =0 \\
\alpha+\beta & =1 \\
\alpha \beta & =-1
\end{aligned}
$$

Compute eigenvectors:

$$
\begin{aligned}
& \lambda=\alpha \text { : } \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\alpha\binom{x}{y} \text {. } \\
& \left(\begin{array}{cc}
1-\alpha & 1 \\
1 & -\alpha
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \begin{array}{cc|ccc|c}
1-\alpha & 1 & 0 & \beta & \beta & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \rightarrow \begin{array}{rc|ccc|c}
1 & 1 / \beta & 0 & \longrightarrow & 1 & -\alpha \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Solution $x-\alpha y=0$

$$
x=\alpha y
$$

This is the line $\binom{x}{y}=t\binom{\alpha}{1}$

$$
\begin{aligned}
\lambda=\beta: & \left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\beta\binom{x}{y} . \\
& \left(\begin{array}{cc}
1-\beta & 1 \\
1 & -\beta
\end{array}\right)\binom{x}{y}=\binom{0}{0}
\end{aligned}
$$

$$
\left.\begin{array}{cc|ccc|l}
Q-\beta & 1 & 0 & \rightarrow & 1-\beta & 1 \\
\mid 1 & -\beta & 0 & & 0 & 0
\end{array} \right\rvert\, 0
$$

$$
\rightarrow \quad \alpha \quad 1 \left\lvert\, \begin{array}{llll|l}
0 & \rightarrow & 1 & 1 / \alpha & 0 \\
& 0 & 0 & 0 & \\
0 & 0 & 0
\end{array}\right.
$$

$$
\begin{array}{r|r|rrr}
\rightarrow \quad 1 & -\beta & 0 & \rightarrow & x-\beta y=0 \\
0 & 0 & 0 & & x=\beta y
\end{array}
$$

This is the line $\binom{x}{y}=t\binom{\beta}{1}$.

Now observe

$$
\begin{aligned}
& \alpha=\frac{1+\sqrt{5}}{2} \approx 1.618 \quad \text { w he golden ratio" } \\
& \beta=\frac{1-\sqrt{5}}{2} \approx-0.618
\end{aligned}
$$

But the -0.618 hops back and forth.
Our Trajectory.

$\binom{1}{0}$

The points $\vec{v}_{n}=\binom{F_{n+1}}{F_{n}}$ get very close to the lime $t\binom{9}{1}$. In other words,

$$
\frac{F_{n+1}}{F_{n}} \approx \frac{\alpha}{1} \approx \underset{\substack{\text { rato" }}}{\underset{1.618}{ }{ }^{\text {golden }}}
$$

This means that

$$
F_{n} \approx C \alpha^{n}=C(1.618)^{n}
$$

for some constant C What is the constant?

Step 1: Express $\vec{V}_{0}=\binom{1}{0}$ in terms of eigenvectors:

$$
\binom{1}{0}=\frac{1}{\sqrt{5}}\binom{\alpha}{1}-\frac{1}{\sqrt{5}}(\beta)
$$

Details omitted.
Step ${ }^{2}$: Apply A^{n}.

$$
\begin{aligned}
& \binom{F_{n+1}}{F_{n}}=A^{n}\binom{1}{0} \\
& =A^{n}\left[\frac{1}{\sqrt{5}}\binom{1}{1}-\frac{1}{\sqrt{5}}(\beta)\right] \\
& =\frac{1}{\sqrt{5}} A^{n}\binom{\alpha}{1}-\frac{1}{\sqrt{5}} A^{n}\left(\frac{\beta}{1}\right) \\
& =\frac{1}{\sqrt{5}} \alpha^{n}\binom{\alpha}{1}-\frac{1}{\sqrt{5}} \beta^{n}\left(\frac{\beta}{1}\right) \\
& \Longrightarrow E_{n}=\frac{1}{\sqrt{5}} \alpha^{n}-\frac{1}{\sqrt{5}} \beta^{n} \\
& =\frac{1}{\sqrt{5}}(1.618)^{n}-\frac{1}{\sqrt{5}}(-0.618)^{n} \\
& \approx \frac{1}{\sqrt{5}}(1.618)^{-n}
\end{aligned}
$$

Becanse $\frac{1}{\sqrt{5}}(-0.618)^{n} \rightarrow 0$

$$
a s \quad n \longrightarrow \infty
$$

