June 5 - June 9

Last time I stated the "Central problem of Linear Algebra":

A To solve a system of m simultaneous linear equations in n unknowns.

We will write the general system as

$$
\left\{\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots
\end{aligned}\right.
$$

where x_{1}, \cdots, x_{n} are variables and $a_{11}, \ldots, a_{m n} \& b_{1}, \cdots, b_{m}$ are constants.

There are two different ways to visualize a Linear system. Gilbert Strong calls them the "row picture" and the "column picture".
(1) The Row Picture.

The m simultaneous linear equations in n variables represent the intersection of m hyperplanes in n-dimensional space.

Intuition: If the equations are "randan" or "generic" then the solution will be an $(n-m)$-dimensional plane.

If $m>n$ then there is "probaluly"
NO SOLUTION.

Example: 3 planes in 3D probably meet at a point. 4 planes in 3D probably don't meet anywhere [the first 3 probably meet at a point and then the 4th probably doesn't contain this point].
(2) The Column Picture.

We can rewrite the original system of m linear equations as one vector equation:

$$
\begin{gathered}
x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m 1}
\end{array}\right) \\
x_{1} \vec{a}_{+1}+x_{2} \vec{a}_{+2}+\cdots+x_{n} \vec{a}_{\pi n}=\vec{b}
\end{gathered}
$$

Problem: Combine n given vectors in m-dimensional space to reach a given target vector. In other words: starting at $\overrightarrow{0}$, how far do you have to travel in the directions $\vec{a}_{*_{1}}, \vec{a}_{* 2}, \ldots, \vec{a}_{* n}$ in order to reach the restauront at \vec{b} ? ?

Since this problem is mathematically equivalent to (1) we can tronsfer some of our intuition.

Example: If I give you 3 direction vectors $\vec{a}_{* 1}, \vec{a}_{* 2}, \overrightarrow{a_{* 3}}$ and a target vector \vec{t} in $4 D$ space, con you find numbers x_{1}, x_{2}, x_{3} such that

$$
x_{1} \stackrel{\rightharpoonup}{a}_{+1}+x_{2} \stackrel{\rightharpoonup}{a}_{+2}+x_{3} \vec{a}_{+3}=\stackrel{\rightharpoonup}{b} \text { ? }
$$

Probably not! There are two reasons:

1. The vectors $x_{1} \vec{a}_{11}+x_{2} \vec{a}_{12}+x_{3} \vec{a}_{13}$ probably form a 3 -plane in $4 D$ and the point \vec{b} is probably not in this 3-plane.
2. The row picture of this problem is the intersection of 4 planes in 3D and we already agreed that this probably has no solution.

The pictures (1) \& (2) are quite valuable for interpreting solutions or guessing the form of the solution. But they don't help us to actually compute the solution. For that we need a specific algebraic technique; and we are lucky to have one.

Our technique is called "Goussion Elimination" and we've already seen it in action. I'll be a bit more explicit today.

Example of Gaussian Elimination:

$$
\left\{\begin{array}{l}
\left(x_{1}\right)+3 x_{2}+0+2 x_{4}=1 \tag{1}\\
0+0+x_{3}+4 x_{4}=6 \\
x_{1}+3 x_{2}+x_{3}+6 x_{4}=7
\end{array}\right.
$$

Use the "pivot" x_{1} in (1) to eliminate x_{1} from (2) \& (3). Luckily, equation already has no x_{1}.

$$
\left\{\begin{array}{l}
\left(x_{1}\right)+3 x_{2}+0+2 x_{4}=1 \tag{1}\\
\left.0+0+x_{3}\right)+4 x_{3}=6 \\
0+0+x_{3}+4 x_{3}=6
\end{array}\right.
$$

Now we look for a pivot in the x_{2} column but there isn't one! So we move on the x_{3} column. We will use the pivot x_{3} in (2) to eliminate the λ_{3} from (3)'.

$$
\left\{\begin{array}{c}
1\left(x_{1}+3 x_{2}+0+2 x_{4}=1\right. \tag{1}\\
0+0+\left(x_{3}\right)+4 x_{4}=6 \\
0+0+0+0=0
\end{array}\right.
$$

Now we look for a pivot in the x_{y} column but there isn't one! Oh well. Now our system is in "row echelon form" (REF).

$$
\text { [Note: echelon = staircase }]
$$

The final step is to multiply equations by numbers so that the pivot terms have coefficient 1. Then we perform backwards elimination" to eliminate the terms above our pivots. Since koth of these steps are already done (luckily) we can say that our system is in "reduced row echelon form" (RREF).

Once the system is in RREF it becomes easy to read off the solution. In our case we have
pivot variables: x_{1}, x_{3}
free variables: x_{2}, x_{4}

The solution is

$$
\begin{aligned}
& x_{1}=1-3 x_{2}-2 x_{4} \\
& x_{2}=x_{2} \\
& x_{3}=6-4 x_{4} \\
& x_{4}=x_{4}
\end{aligned}
$$

which con be written in vector form as

$$
\begin{aligned}
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) & =\left(\begin{array}{l}
1-3 x_{2}-2 x_{4} \\
0+1 x_{2}+0 x_{4} \\
6+0 x_{2}-4 x_{4} \\
0+0 x_{2}+1 x_{4}
\end{array}\right) \\
& =\left(\begin{array}{l}
1 \\
0 \\
6 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-2 \\
0 \\
4 \\
1
\end{array}\right)
\end{aligned}
$$

Note that the solution is "2-dimensional" because it has two free variables.

Recall from Last time: We considered the linear system

$$
\left\{\begin{array}{l}
x_{1}+3 x_{2}+0+2 x_{4}=1 \tag{1}\\
0+0+x_{3}+4 x_{4}=6 \\
x_{1}+3 x_{2}+x_{3}+6 x_{4}=7
\end{array}\right.
$$

We performed "Gaussian elimination" to put the system in the form

$$
\left\{\begin{array}{l}
\left(x_{1}\right)+3 x_{2}+0+2 x_{4}=1 \\
0+0+\left(x_{3}\right)+4 x_{4}=6 \\
0+0+0+0=0
\end{array}\right.
$$

We called this the "reduced row echelon form" (RREF) of the system.

The variables in the corners of the staircase (ie. $x_{1} \& x_{3}$) are called pivot variables and all other variables $\left(i . e \overline{x_{2}}\right.$ \& x_{4}) are called free variables.

Finally we con write down the solution in terms of the free variables:

$$
\begin{aligned}
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) & =\left(\begin{array}{l}
1-8 x_{2}-2 x_{4} \\
x_{2} \\
6-4 x_{4} \\
x_{4}
\end{array}\right) \\
& =\left(\begin{array}{l}
1-3 x_{2}-2 x_{4} \\
0+1 x_{2}+0 x_{4} \\
6+0 x_{2}-4 x_{4} \\
0+0 x_{2}+1 x_{4}
\end{array}\right) \\
& =\left(\begin{array}{l}
1 \\
0 \\
6 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-2 \\
0 \\
-4 \\
1
\end{array}\right)
\end{aligned}
$$

To clean this up let's define $\vec{p}=(1,0,6,0)$,

$$
\begin{aligned}
& \vec{u}=(-3,1,0,0), \vec{v}=(-2,0,-4,1), \\
& x_{2}=s \& x_{4}=t
\end{aligned}
$$

Then the solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\stackrel{\rightharpoonup}{p}+s \vec{u}+t \stackrel{\rightharpoonup}{v}
$$

Pieture: This is the 2-dimensional plane in $4 D$ containing the point \vec{p} and spanned by tue vectors $\vec{u} \& \vec{v}$.

This plane does not contain the origin $\overrightarrow{0}$.
We can think of the 2 -plane $\vec{p}+5 \vec{u}+t \vec{v}$ as the interesection of the three hyperplanes defined by equations (1), (2) \& (3). This is the row picture

Q: We expect three hyperplanes in $4 D$ to intersect in a Lime (1-plane).
What went wrong?
A: While performing elimination we found the relationship

$$
(1)+(2)=(3) .
$$

This means that any solution to the first two equations is also a solution to the third. Gemetrically, the intersection hyperplanes (1) \& (2) is accidentally contained in the hyperplane (3).

That means there must also be something wrong with the column picture. Let's see what it is. The system (() becomes one vector equation:

$$
x_{1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+x_{2}\left(\begin{array}{l}
3 \\
0 \\
3
\end{array}\right)+x_{3}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+x_{4}\left(\begin{array}{l}
2 \\
4 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
6 \\
7
\end{array}\right)
$$

Ala, I see the problem! The vectors

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \&\left(\begin{array}{l}
3 \\
0 \\
3
\end{array}\right)
$$

are in the same direction, so one of them was completely unnecessary.

That was a human introduction to Gaussion elimination. Now lat me show you how. I would tell it to a computer.

Given a system of equations, there are three operations we can do that will yield an equivalent system (ie. a system with the some solution) i
(A) Strap two equations
(B) Replace equation (i) by C (i) where c is a nonzero constant.
(C) Replace equation (i) by (i) $-c$ (i) where c is any constant and (j) is any other equation.

We call (A), (B), (C) the elementary row operations ($E R O_{S}$). The goal of Gaussian elimination is to perform a sequence of ERAS to put a linear system in a nice, standard form (the RREF),
[Most computers have a button to do this.]
Here's (one version of) the algorithm:

- Do. (A) to get a nonzero pivot in the top Left corner. If this is impossible, move ore column to the right. If that's impossible, ST $P P$.
- Do (B) to turn the pivot into a 1.
- Do (C) to eliminate all entries below the pivot.
- Repeat the process on the subsystem below and to the right of the pivot.

Now the system Looks something like this:

$$
\left\{\begin{array}{ll|llllllll}
0 & 0 & 1 & * & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right.
$$

- Finally, do (C) to eliminate all entries above the pivots, working from the bottom right to the top left.

Now the system is in RREF, which Looks something like this:

$$
\left\{\begin{array}{ll|llllllll}
0 & 0 & 1 & * & 0 & * & * & 0 & * & 0 \\
0 & 0 & 0 & 0 & 1 & * & * & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right.
$$

Performing Faussion elimination is a jolo best left to computers, but we will practice doing it by hond on some small systems. [see HW 3]

Last time I finally defined the method of "Gaussian elimination" in all its gory details. This method was invented by Carl Friedrich Gauss around 1800 in order to compute the orbits of various celestial kodies. However, a similar method already appoared in China in the "Nine Chapters on the Mathematical Art" (263 A.D.).

The algorithm is best suited for computers but we carl still compute some small systems by hand. Today we'll get some practice with this.

Example 1: Solve the system.

$$
\left\{\begin{array}{r}
0+y+z=1 \tag{1}\\
x+y+z=2 \\
2 x+0+3 z=1
\end{array}\right.
$$

First swap (1) \& (2) to get a pivot in the top left.

$$
\left\{\begin{array}{l}
(x+y+z=2 \tag{1}\\
0+y+z=1 \\
2 x+0+3 z=1
\end{array}\right.
$$

The pivot already has coefficient 1. - Now eliminate below the x pivot.

$$
\left\{\begin{array}{l}
x+y+z=2 \tag{1}\\
0+y+z=-1 \\
0-2 y+z=-3
\end{array}\right.
$$

(3) ${ }^{\prime \prime}=(3)^{\prime}-2(1)^{\prime}$

Now recursively apply the method to the subsystem (2)" \& (3)" that involves only y\&z.

$$
\left\{\begin{array}{l}
x+y+z=2 \tag{1}\\
0+y+z=1 \\
0+0+3 z=-1
\end{array}\right.
$$

Divide equation (3) "'1 ky 3. to get the pivot 1. Now the system is in "row echelon form" (REF).

$$
\begin{cases}(x)+y+z=2 & (1)^{\prime \prime \prime}=(1)^{\prime \prime \prime} \\ 0+(y)+z=1 & (2)^{\prime \prime \prime}=(2)^{\prime \prime \prime} \\ 0+0+(z)=-1 / 3 & (3)^{\prime \prime \prime}=1 / 3(3)^{\prime \prime \prime}\end{cases}
$$

To put the system in reduced row echelon form (RREF) we first eliminate above the z pivot.

Finally, we eliminate above the y piet.

$$
\begin{align*}
& \left\{\begin{array}{l}
x+0+0=1 \\
0+y+0=4 / 3 \\
0+0+z=-1 / 3
\end{array}\right. \tag{1}\\
& \text { (3) }=(2)^{1 \cdots \cdot \prime \prime} \tag{2}
\end{align*}
$$

This is the RREF, and now the solution is obvious:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
4 / 3 \\
-1 / 3
\end{array}\right)
$$

Row Picture: The three planes (1), (2), (3) meet. at the single pisint $(1,4 / 3,-1 / 3)$.

Column Picture: We con reach the point $(1,2,1)$ by combining the thrice columns as follows.

$$
1\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)+\frac{4}{3}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

As we see, the nutation gets quite cumbersome. So in the next example Let's streamline the notation ky throwing away all unnecessary symbols.

Example 2: Solve the system.

$$
\left\{\begin{array}{l}
2 x_{1}-3 x_{2}-x_{3}+2 x_{4}+3 x_{5}=4 \tag{1}\\
4 x_{1}-4 x_{2}-x_{3}+4 x_{4}+11 x_{5}=4 \\
2 x_{1}-5 x_{2}-2 x_{3}+2 x_{4}-x_{5}=9 \\
0+2 x_{2}+x_{3}+0+4 x_{5}=5
\end{array}\right.
$$

Instead well write it like this:

$$
\left(\begin{array}{rrrrr|r}
(2) & -3 & -1 & 2 & 3 & 4 \tag{1}\\
4 & -4 & -1 & 4 & 11 & 4 \\
2 & -5 & -2 & 2 & -1 & 9 \\
0 & 2 & 1 & 0 & 4 & 5
\end{array}\right)
$$

This is called the "ougmented matrix" notatian. Now we perform Gavssian elimination as usuall. [Actually, I'll avoid scaling the pirots to 1 until the end tecause I don't like fractions.]

$$
\begin{align*}
& \left(\begin{array}{ccccc|c}
2 & -3 & -1 & 2 & 3 & 4 \\
0 & 2 & 1 & 0 & 5 & -4 \\
0 & -2 & -1 & 0 & -4 & 5 \\
0 & 4 & 1 & 0 & 4 & 5
\end{array}\right) \tag{1}\\
& \left(\begin{array}{ccccc|c}
2 & -3 & -1 & 2 & 3 & 4 \\
0 & 2 & 1 & 0 & 5 & -4 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 & -1
\end{array}\right) \tag{1}
\end{align*}
$$

(2) \rightarrow (2)
(3) \rightarrow (3)
(4) $\rightarrow(4)+$ (3)
$\left(\begin{array}{ccccc|c}1 & -3 / 2 & -1 / 2 & 1 & 3 / 2 & 2 \\ 0 & (1) & 1 / 2 & 0 & 5 / 2 & -2 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
(1) $\rightarrow \frac{1}{2}$ (1)
(2) $\rightarrow 1 / 2$ (2)
(3) \rightarrow (3)
(4) \rightarrow (4)

$$
\left(\begin{array}{ccccc|c}
1 & -3 / 2 & -1 / 2 & 1 & 0 & 1 / 2 \tag{1}\\
0 & 1 & 1 / 2 & 0 & 0 & -9 / 2 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\text { (2) } \rightarrow \text { (2) }-\frac{5}{2}(3)
$$

$$
\begin{equation*}
(3)-(3) \tag{4}
\end{equation*}
$$

RREF $\quad\left(\begin{array}{ccccc|c}1 & 0 & 1 / 4 & 1 & 0 & -25 / 4 \\ 0 & (1) & 1 / 2 & 0 & 0 & -9 / 2 \\ 0 & 0 & 0 & 0 & (1) & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
(1) \rightarrow (1) $+\frac{3}{2}$ (2)
(2) \rightarrow (2)

Tronslating back to old notation, the RREF of the system is

$$
\left\{\begin{array}{l}
\left(x_{1}\right)+0+\frac{1}{4} x_{3}+x_{4}+0=-25 / 4 \\
0+\left(x_{2}+\frac{1}{2} x_{3}+0+0=-9 / 2\right. \\
0+0+0+0+x_{5}=1 \\
0+0+0+0+0=0
\end{array}\right.
$$

Pivot variables: x_{1}, x_{2}, x_{5}
Free variables: x_{3}, x_{4}.
Solet's define $\delta:=x_{3}, t:=x_{4}$ and then express the solution in terms of the parameters s \& t.

The solution is

$$
\begin{aligned}
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\lambda_{3} \\
x_{4} \\
x_{5}
\end{array}\right) & =\left(\begin{array}{c}
-25 / 4-1 / 4 x_{3}-x_{4} \\
-9 / 2-1 / 2 x_{3} \\
x_{3} \\
x_{4} \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
-25 / 4-1 / 45-1 t \\
-9 / 2-1 / 25+0 t \\
0+15+0 t \\
0+05+1 t \\
1+05+0 t \\
0 \\
0
\end{array}\right)+5\left(\begin{array}{c}
5 \\
-95 / 4 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 / 2 \\
0 \\
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

This is a parametrized 2 D plane living in 5 D space. We expected a line $(5-4=1)$ but we got a plane, so There must be some relationship among the equations.

Last time we looked at the following system of 4 linear equations in 5 unknowns:

$$
\left\{\begin{array}{l}
2 x_{1}-3 x_{2}-x_{3}+2 x_{4}+3 x_{5}=4 \\
4 x_{1}-4 x_{2}-x_{3}+4 x_{4}+11 x_{5}=4 \\
2 x_{1}-5 x_{2}-2 x_{3}+2 x_{4}-x_{5}=9 \\
0+2 x_{2}+x_{3}+0+4 x_{5}=5 \tag{4}
\end{array}\right.
$$

We dropped all unnessary symbols to write this as an "augmented matrix":

$$
\left(\begin{array}{rrrrr|r}
2 & -3 & -1 & 2 & 3 & 4 \\
4 & -4 & -1 & 4 & 11 & 4 \\
2 & -5 & -2 & 2 & -1 & 9 \\
0 & 2 & 1 & 0 & 4 & 5
\end{array}\right)
$$

Then we performed Gousslan elimination to pat the matrix in RREF:

$$
\left(\begin{array}{ccccc|c}
1 & 0 & 1 / 4 & 1 & 0 & -25 / 4 \\
0 & 1)^{1 / 2} & 0 & 0 & -9 / 2 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Finely, we turned this back into a system of equations

$$
\left\{\begin{aligned}
x_{1}+1 / 4 x_{3}+x_{4} & =-25 / 4 \\
\left(x_{2}+1 / 2 x_{3}\right. & =-9 / 2 \\
\left(x_{3}\right. & =1 \\
0 & =0
\end{aligned}\right.
$$

and then read off the solution.
Naming the free variables $x_{3}=s$ \& $x_{4}=t$ gives us

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-\frac{25}{4}-\frac{1}{4} 5-t \\
-9 / 2-1 / 25 \\
5 \\
t \\
1
\end{array}\right)=\left(\begin{array}{c}
-25 / 4 \\
-9 / 2 \\
0 \\
0 \\
1
\end{array}\right)+s\left(\begin{array}{c}
-1 / 4 \\
-1 / 2 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

Now let's interpret the solution.

Row Picture: The intersection of the 4 hyperplanes (1) (2) (3) (4) is a
2-dimensional plonk living in 5D space.
This is not what we expected. [With $m=4$ equations in $n=5$ unknowns we expect a $(n-m)=(5-4)=1$ dimensional solution,] So there must have been some relationship among the equations. Sure enough, we have

$$
\text { (1) }=(3)+(4),
$$

which means that any one of these three equations con be thrown away without changing the solution.
Geometrically, the intersection of any two of these hyperplanes is contained in the third. My mental picture looks Like this

even though I know this picture has the wrong dimension. [The correct picture is three 4-planes meeting at a 3-plone in 5D space, which I can't draw.]

Column Picture: We are trying to hit the point $\vec{b}=(4,4,9,-5)$ in $5 D$ space by combining the five vectors

$$
\overrightarrow{a_{1}}=\left(\begin{array}{l}
2 \\
4 \\
2 \\
0
\end{array}\right), \overrightarrow{a_{2}}=\left(\begin{array}{l}
-3 \\
-4 \\
-5 \\
2
\end{array}\right), \vec{a}_{3}=\left(\begin{array}{c}
-1 \\
-1 \\
-2 \\
1
\end{array}\right), \vec{a}_{4}=\left(\begin{array}{l}
2 \\
4 \\
2 \\
0
\end{array}\right), \vec{a}_{5}=\left(\begin{array}{c}
3 \\
11 \\
-1 \\
4
\end{array}\right) .
$$

We know that there must be some relationship among these vectors [because the solution doesn't have the expected dimension] and indeed there is:

$$
\overrightarrow{a_{1}}=\overrightarrow{a_{4}}
$$

This means that if the problem has a solution, then it must have infinitely many solutions.

Indeed, suppose that
(*). $x_{1} \stackrel{\rightharpoonup}{a_{1}}+x_{2} \stackrel{\rightharpoonup}{a_{2}}+x_{3} \vec{a}_{3}+x_{4} \vec{a}_{4}+x_{5} \vec{a}_{5}=\vec{b}$
is a solution. Then I claim that for any number k we have another solution

$$
\left(x_{1}+k, x_{2}, x_{3}, x_{4}-k_{2}, x_{5}\right)
$$

Proof: Assuming (x) is true we have

$$
\begin{aligned}
& \left(x_{1}+k\right) \overrightarrow{a_{1}}+x_{2} \overrightarrow{a_{2}}+x_{3} \vec{a}_{3}+\left(x_{4}-k\right) \overrightarrow{a_{4}}+x_{5} \vec{a}_{5} \\
& = \\
& \left(x_{1} \overrightarrow{a_{1}}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}+x_{4} \vec{a}_{4}+x_{5} \overrightarrow{a_{5}}\right)+\left(k \overrightarrow{a_{4}}-k \overrightarrow{a_{4}}\right) \\
& =\vec{b}+\overrightarrow{0}=\vec{b},
\end{aligned}
$$

because $\vec{a}_{1}=\vec{a}_{4}$ and hence

$$
k \stackrel{\rightharpoonup}{a_{1}}-k \stackrel{\rightharpoonup}{a_{4}}=k \stackrel{\rightharpoonup}{a_{1}}-k \vec{a}_{1}=\overrightarrow{0} .
$$

That's enough interpretation for today.

Let's summarize what we know about linear systems and Gaussian elimination.

1. A linear system looks like Dis:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

2. We can express it as an augmented matrix by dropping all the unnecessary symbols:

$$
\left(\begin{array}{ccc|c}
a_{11} & a_{12} & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & b_{2} \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

3. After performing Gaussian elimination we obtain the reduced row echelon form (RREF) which looks like this:
$\left(\begin{array}{c|ccccccc|c}0 & 1 & * & 0 & * & * & 0 & * & * \\ 0 & 0 & 0 & 1 & * & * & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & *\end{array}\right)$
4. If we obtain the equation $0=*$ where $*$ is nat zero, then the system has No solution.
5. otherwise, we let $t_{1}, t_{2}, \ldots, t_{f}$ be the free variables and we express the solution as

$$
\stackrel{\rightharpoonup}{x}=\vec{p}+t_{1} \vec{u}_{1}+t_{2} \vec{u}_{2}+\cdots+t_{f} \vec{u}_{f}
$$

for some point \vec{p} and some vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{f}$. The solution is an f-dimensional plane living in n-dimensisial space.

For the example in part 3, we have pivot variables

$$
x_{2}, x_{4}, x_{7}
$$

and free variables

$$
x_{1}, x_{2}, x_{5}, x_{6}, x_{8} .
$$

The solution is a 5 -dimensional plane living in 8-dimensional space.

Now you have seen everything there is to sec about Gaussion elimination. Weill let it sink in for a little while and then weill move on to something else.

Today: HW3 Discussion.
Problem 1': Why dos I say that a hyperplane is "flat"?

Let $\vec{a} b e$ a vector in n-dimensional space and let b be a constant. Then the equation

$$
\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{x}=b
$$

defines the hyperplane perpendicular to \vec{a} that has minimum distance $b /\|\vec{a}\|$ from the origin.
Suppose that \vec{x}_{1} \& \vec{x}_{2} are two points on this hyperplane. That is, suppose that the equations

$$
\vec{a} \cdot \vec{x}_{1}=b \quad \& \quad \vec{a} \cdot \vec{x}_{2}=b
$$

are both true.

Then I claim that the midpoint

$$
\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{2}\right)
$$

is also on the hyperplane.
Proof: We have

$$
\begin{aligned}
\vec{a} \cdot(& \left.\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{2}\right)\right) \\
& =\frac{1}{2} \vec{a} \cdot\left(\vec{x}_{1}+\vec{x}_{2}\right) \\
& =\frac{1}{2}\left(\vec{a} \cdot \vec{x}_{1}+\vec{a} \cdot \vec{x}_{2}\right) \\
& =\frac{1}{2}(b+b) \\
& =\frac{1}{2}(2 b)=b
\end{aligned}
$$

Note that this same fact is not true for curvy shapes like a paraboloid or the surface of a sphere. [The midpoint of two points on the surface of a sphere will be inside the sphere, not on the surface.

More generally, the set of points

$$
s \vec{x}_{1}+t \vec{x}_{2} \text { with } s+t=1
$$

is the unique line in n-dimensional space containing the two points $\vec{x}_{1} \& \vec{x}_{2}$.

Q: If it's a line, why does it have two free parameters?

A: It doesn't : The equation $s+t=1$ means that $s=1-t$, so we can express the line as

$$
\begin{aligned}
s \vec{x}_{1}+t \vec{x}_{2} & =(1-t) \vec{x}_{1}+t \vec{x}_{2} \\
& =\vec{x}_{1}+t\left(\vec{x}_{2}-\vec{x}_{1}\right)
\end{aligned}
$$

This is the (inc containing the point \vec{x}_{1} and parallel to the vector $\stackrel{\rightharpoonup}{x_{2}}-\vec{x}_{1}$.

Now, if $\overrightarrow{x_{1}}$ \& \vec{x}_{2} are two points on the hyperplane $\vec{a} \cdot \vec{x}=b$, I claim that the whole line $\vec{x}_{1}+t\left(\vec{x}_{2}-\vec{x}_{1}\right)$ lives in the hyperplane.
Proof: Assume that $\vec{a} \cdot \vec{x}_{1}=b$ \& $\vec{a} \cdot \vec{x}_{2}=b$.
Then for all values of t we have

$$
\begin{aligned}
& \vec{a} \cdot\left(\vec{x}_{1}+t\left(\overrightarrow{x_{2}}-\vec{x}_{1}\right)\right) \\
&=\vec{a} \cdot \vec{x}_{1}+t \vec{a} \cdot\left(\vec{x}_{2}-\vec{x}_{1}\right) \\
&=\vec{a} \cdot \vec{x}_{1}+t\left(\vec{a} \cdot \vec{x}_{1}-\vec{a} \cdot \vec{x}_{2}\right) \\
&=b+t(b-b)=b
\end{aligned}
$$

This is really what I mean when I say that a hyperplane is "flat".

But even more is true. Suppose that we have a system of hyperplanes

$$
\vec{a}_{1} \cdot \vec{x}=b_{1}, \vec{a}_{2} \cdot \vec{x}=b_{2}, \cdots, \vec{a}_{m} \cdot \vec{x}=b_{m} .
$$

If the two points \vec{x}_{1} \& \vec{x}_{2} lie in the intersection of the hyperplanes, then they Lee in each individual hyperplane, so the lune $\vec{x}_{1}+t\left(\vec{x}_{2}-\vec{x}_{1}\right)$ lies in each individual hyperplane, so the line lies in the intersection of the hyperplanes.

We conclude that any intersection of hyperplanes is also "flat".

In particular $[$ see HW1(d)], if 25 hyperplanes in 12-dimensional space meet at two given points \vec{x}_{1} \& \vec{x}_{2} then they also meet at
every point of the line $\vec{x}_{1}+t\left(\overrightarrow{x_{2}}-\vec{x}_{1}\right)$ |
[including, for example, the midpoint of \vec{x}_{1} \& \vec{x}_{2} (when $t=1 / 2$)

Starting on Friday we will begin developing a languge that makes it much easter to say these things: The languge of "matrix al getra"".

Problem 3'. Consider the system

$$
\left\{\begin{align*}
x+y+z & =2 \tag{1}\\
x+2 y+z & =3 \\
2 x+3 y+2 z & =c
\end{align*}\right.
$$

The planes (1) \& (2) meet in a line L, which we con find by reducing the subsystem of equations (1) \& (2):

$$
\begin{align*}
& \left\{\begin{array}{l}
x+y+z=2 \\
0+y+0=1
\end{array}\right. \tag{1}\\
& \left\{\begin{array}{l}
x+0+z=1 \\
0+y+0=1
\end{array}\right. \tag{2}
\end{align*}
$$

Let $t:=z$. Then the line L is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1-t \\
1 \\
t
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

The question is : how does the plane (3) meet the line L?

Well, there are three possik4 cases:
i) (3) contains the line L,
ii) (8) intersects L at a paint,
(ii) (3) never meets L (ie. the plane (3) is parallel to the line L).

On HW3 you found that
i) happens when $c=5$,
ii) never happens,
iii) happens when $c \neq 5$.
see the HW3 solutions for a beautiful picture of the situations
i) \& iii)

