Let A be a square matrix. A scalar λ is called an *eigenvalue of* A if there exists a nonzero vector $\vec{v} \neq \vec{0}$ satisfying

 $A \vec{v} = \lambda \vec{v}.$

Any such vector \vec{v} is called a λ -eigenvector. If A is $n \times n$ then it has at most n different eigenvalues. They are the roots of the *characteristic equation*:

$$\det(A - \lambda I) = 0.$$

Problem 1. Suppose that λ is an eigenvalue of A and suppose that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are λ -eigenvectors. Show that any linear combination of the \vec{v}_i is also a λ -eigenvector. [Conclusion: The collection of λ -eigenvectors for A forms a subspace called the λ -eigenspace of A.]

Problem 2. Consider the matrix $A = \begin{pmatrix} 5 & -2 \\ 12 & -5 \end{pmatrix}$.

- (a) Write down the characteristic equation of A and solve it to find the eigenvalues. There will be two of them.
- (b) For each of the two eigenvalues, find all of the corresponding eigenvectors.
- (c) Draw the two eigenspaces of A, labeled by their eigenvalues.

Problem 3. Let \vec{a} be any nonzero vector and consider the matrix $P = \vec{a}\vec{a}^T/\vec{a}^T\vec{a}$ that projects onto the line $t\vec{a}$.

- (a) Show that \vec{a} is an eigenvector of *P*. What is the corresponding eigenvalue?
- (b) Let \vec{b} be any vector perpendicular to \vec{a} . Show that \vec{b} is an eigenvector of P. What is the corresponding eigenvalue?
- (c) Draw the two eigenspaces of P, labeled by their eigenvalues.

Problem 4. Consider the same matrix P from Problem 3. I claim that the matrix R = I - 2P performs a *reflection* across the (hyper)plane with normal vector \vec{a} . [You can just believe me about that.]

- (a) If \vec{v} is an eigenvector of P with eigenvalue λ , show that \vec{v} is also an eigenvector of R, but with eigenvalue $1 2\lambda$. [Hint: Don't think.]
- (b) Use this observation to find all of the eigenvalues and eigenvectors of R. [Hint: Don't do any work.]
- (c) Draw the eigenspaces of R, labeled by their eigenvalues.