Homework 5
4.1.24: Suppose A^{-1} exists. Let $\vec{a}_{1}^{\top}, \cdots, \vec{a}_{n}^{\top}$ be the hows of A and $L+\vec{b}_{1}, \cdots, \vec{b}_{n}$ be the columns of A^{-1}. We have

$$
A A^{-1}=I
$$

By looking at the (i, j) entry on each. side we get

$$
\begin{aligned}
& (\text { th row } A)\left(j \text { th col } A^{-1}\right)=(i, j \text { entry } I) \\
& \vec{a}_{i} \circ \vec{b}_{j}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases}
\end{aligned}
$$

In particular we see that $\vec{a}_{i} \circ \vec{b}_{1}=0$ for $i=2,3, \cdots, n$. This means that the 1st column of A^{-1} (ie. \vec{t}_{1}) is perpendicular to the Ind, Ord, ... nth roues of A
4.1.25. Suppose A has columns

$$
\vec{a}_{1}, \vec{a}_{2}, \cdots, \overrightarrow{a_{n}}
$$

such that $\overrightarrow{a_{i}} \Delta \overrightarrow{a_{j}}=0$ for $i \neq j$ and $\vec{a}_{i} \Delta \vec{a}_{i}=\left\|\vec{a}_{i}\right\|^{2}=1$ for a $\| i$.

The eth row of A^{\top} is ${\overrightarrow{a_{i}}}^{T}$ by definition Then the i, j entry of $A^{\top} A$ is

$$
\begin{aligned}
(i, j)-e n t r y & A^{\top} A
\end{aligned}=\left(i \text { th row } A^{\top}\right)\left(j^{\text {th }} \text { col } A\right) ~ 子 ~\left(\overrightarrow{a_{i}} \cdot \overrightarrow{a_{j}} .\right.
$$

In other words, AT A $=I$
4.1.26. For example, consider the matrix

$$
A=\left(\begin{array}{rrr}
1 & -2 & -2 \\
-2 & 1 & -2 \\
-2 & -2 & 1
\end{array}\right)
$$

One can check that the columns of A are mutually perpendicular. It follows from 2.4 .25 that $A^{\top} A$ is a "diagonal" matrix. In fact we have

$$
A^{\top} A=\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right)=9 I
$$

4.2.1. Project \vec{b} onto the line $t \vec{a}$:
(a) $\vec{b}=(1,2,2)$ \& $\vec{a}=(1,1,1)$.

$$
\left.\begin{array}{rl}
\vec{p} & \left.=\left(\frac{\vec{a}^{\top} \vec{b}}{\vec{a}^{\top} \vec{a}}\right) \vec{a}=\frac{\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)}{\left(\begin{array}{ll}
1 & 1
\end{array}\right)} \begin{array}{l}
1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
1 \\
1
\end{array}\right)
$$

(10) $\vec{b}=(1,3,1) \& \vec{a}=(-1,-3,-1)$.

$$
\begin{aligned}
\vec{p} & =\left(\frac{\vec{a}^{\top} \vec{b}}{\vec{a}^{\top} \vec{a}}\right) \vec{a}=\frac{\left(\begin{array}{lll}
-1 & -3 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)}{\left(\begin{array}{lll}
1 & 8 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
3 \\
1
\end{array}\right)}\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right) \\
& =\frac{-11}{11}\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-3 \\
-1
\end{array}\right) .
\end{aligned}
$$

We gat $\vec{p}=\vec{b}$. Why did that happen?
Answer: Because the point \vec{F} was already on the line $t \vec{a}$,
Projecting twice does nothing.

$$
4.2,5, \quad \overrightarrow{a_{1}}=(-1,2,2) \& \frac{\vec{a}}{2}=(2,2,-1)
$$

Projection Matrices:

$$
\begin{aligned}
& P_{1}=\vec{a}_{1} \vec{a}_{1}^{\top} / \vec{a}_{1}^{\top} \vec{a}_{1}=\frac{\left(\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right)\left(\begin{array}{lll}
-1 & 2 & 2
\end{array}\right)}{\left(\begin{array}{lll}
1 & 2 & 2
\end{array}\right)\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right)} \\
& =\frac{1}{9}\left(\begin{array}{rrr}
1 & -2 & -2 \\
-2 & 4 & 4 \\
-2 & 4 & 4
\end{array}\right) \\
& P_{2}=\vec{a}_{2}^{\top} \vec{a}_{2} / \vec{a}_{2}^{\top} \vec{a}_{2}=\frac{\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right)\left(\begin{array}{ll}
2 & 2
\end{array}-1\right)}{\left(\begin{array}{ll}
2 & 2
\end{array}-1\right)\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right)} \\
& =\frac{1}{9}\left(\begin{array}{rrr}
4 & 4 & -2 \\
4 & 4 & -2 \\
-2 & -2 & 1
\end{array}\right) .
\end{aligned}
$$

Product: $P_{1} P_{2}=\frac{1}{81}\left(\begin{array}{ccc}1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4\end{array}\right)\left(\begin{array}{ccc}4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ Why did this happen?
Because the lines $t \vec{a}_{1} \& t \vec{a}_{2}$ are 1

We also have

$$
P_{2} P_{1}=0
$$

4.2.10. We usually don't have $P_{1} P_{2}=P_{2} P_{1}$

Example: $\overrightarrow{a_{1}}=(1,0)$ \& $\vec{a}_{2}=(1,2)$.

$$
\begin{aligned}
& P_{1}=\frac{\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)}{(10)\binom{1}{0}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \left.P_{2}=\frac{\binom{1}{2}\left(\begin{array}{ll}
1 & 2) \\
(12)
\end{array}\right)=\frac{1}{1}\binom{1}{2}}{} \begin{array}{l}
1 \\
2
\end{array}\right)
\end{aligned}
$$

Product: $\quad P_{1} P_{2}=\frac{1}{5}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)=\frac{1}{5}\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right)$.
This matrix first projects ont $t \vec{a}_{2}$ and then projects onto $t \stackrel{\rightharpoonup}{a}$, :

Is $P_{1} P_{2}$ a projection? I would say NO because

$$
\left(P_{1} P_{2}\right)^{2}=\frac{1}{25}\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=\frac{1}{5} P_{1} P_{2} \neq P_{1} P_{2}
$$

[.It's a projection followed by a "contraction" by $/ 5$.]
4.2.16. Which linear combination of $(1,2,-1)$ \& $(1,0,1)$ is closest to $(2,1,1)$?

Project $\vec{t}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ onto col space of $A=\left(\begin{array}{cc}1 & 1 \\ 2 & 0 \\ -1 & 1\end{array}\right)$:

$$
\begin{gathered}
\text { prof }=A \vec{x} \text { where } \\
A^{\top} A \vec{x}=A^{\top} \vec{b} \\
\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
2 & 0 \\
-1 & 1
\end{array}\right) \vec{x}=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) \\
\left(\begin{array}{ll}
6 & 0 \\
0 & 2
\end{array}\right) \vec{x}=\binom{3}{3} \\
\vec{x}=\left(\begin{array}{cc}
1 / 6 & 0 \\
0 & 1 / 2
\end{array}\right)\binom{3}{3}=\binom{1 / 2}{3 / 2}
\end{gathered}
$$

Then prof $=\left(\begin{array}{cc}1 & 1 \\ 2 & 0 \\ 1 & 1\end{array}\right)\binom{1 / 2}{3 / 2}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$
We projected $(2,1,1)$ and nothing happened because it was already in the plane!

$$
\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
1 \\
2 \\
1
\end{array}\right)+\frac{3}{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

4.2.17: Suppose that $P^{2}=P$. Then we have

$$
\begin{aligned}
(I-P)^{2} & =(I-P)(I-P) \\
& =I^{2}-P I-I P+P^{2} \\
& =I-P-P+P \\
& =I-P .
\end{aligned}
$$

If P projects onto the column space of A then I-p projects onto the space that is orthogonal to the column space of A.
[Remark: This is the space of vectors \vec{x} that satisfy AT $\vec{x}=\overrightarrow{0}$.]
4.2.18. Examples: If P projects on to the line $t(1,1)$

$$
\left[\text { i.c. if } P=\frac{\binom{1}{1}\binom{1}{1}}{(11)(1)}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right]
$$

Then I-P projects onto the perpendicular Line $x+y=0$.

If P projects onto the line $t(1,1,1)$

$$
\left[\begin{array}{ll}
i-e, & \text { if } \left.P=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\right]
\end{array}\right.
$$

then I-P projects onto the plane $x+y+z=0$

4.2.19. To find two vectors in the plane $x-y-2 z=0$, let $y \& z$ be free. Then

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
y+2 z \\
y \\
z
\end{array}\right)=y\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
$$

By setting $y=1, z=0$ \& $y=0, z=1$ we find that
$\left(\begin{array}{l}1 \\ 1 \\ 8\end{array}\right) \&\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$ are two vectors

So we define $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 0 \\ 0 & 1\end{array}\right)$,
Then the matrix that projects onto the plane is

$$
\begin{aligned}
P & =A\left(A^{\top} A\right)^{-1} A^{\top} \\
& =\left(\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right)\left[\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right)\right]^{-1}\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 2 \\
2 & 5
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right) \frac{1}{6}\left(\begin{array}{cc}
5 & -2 \\
-2 & 2
\end{array}\right)\left(\begin{array}{lll}
1 \\
2 & 1 & 0 \\
1
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right)\left(\left(\begin{array}{cc}
1 \\
2 & -2 \\
-2
\end{array}\right)\right. \\
& =\frac{1}{6}\left(\begin{array}{ccc}
5 & 1 \\
1 & 5 & -2 \\
2 & -2 & 2
\end{array}\right)
\end{aligned}
$$

Is this correct? The next problem will provide a check.
4.2.20. The plane $x-y-2 z=0$ has perpendicular line $t(1,-1,-2)$. The projection ont this line is

$$
Q=\frac{\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)(1-1-2)}{(1-1-2)\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)}=\frac{1}{6}\left(\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 1 & 2 \\
-2 & 2 & 4
\end{array}\right)
$$

Therefore the projection onto the plane is

$$
\begin{aligned}
\text { I-Q } & =\frac{1}{6}\left(\begin{array}{lll}
6 & & \\
& 6 & 6
\end{array}\right)-\frac{1}{6}\left(\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 1 & 2 \\
-2 & 2 & 4
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{lll}
5 & 1 & 2 \\
1 & 5 & -2 \\
2 & -2 & 2
\end{array}\right)
\end{aligned}
$$

4.3.5. We have 4 data points

$$
\binom{t}{b}=\binom{t_{1}}{0},\binom{t_{2}}{8},\binom{t_{3}}{8},\binom{t_{4}}{20}
$$

Note: The times won't matter so Strong didn't even tell us what they are.]

Fit these points to a horizontal line of the form $C=1$.

The equations	$C=0$
$C=8$	
$C=8$	
$C=20$	\(\binom{1}{C}(C)=\left(\begin{array}{c}0 \\

8 \\
1 \\
1 \\
20\end{array}\right)\)
obviously have no solution, so we try the normal equation $A^{\top} A \hat{x}=A^{\top} \vec{I}_{0}$:

$$
\begin{aligned}
&\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)(C)=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
8 \\
8 \\
4 C
\end{array}\right) \\
& c=0+8+8+20 \\
& 4
\end{aligned}
$$

This $C=9$ is just the average of the to values?

Picture.
20

$$
b=9
$$

$\stackrel{\ominus}{-}$
4.3.7. Find the line $D t=6$ through the origin closest to

$$
\binom{t}{k}=\binom{0}{0},\binom{1}{8},\binom{3}{8},\binom{4}{20}
$$

[Now strong tells us the t values]
The silly equations are

$$
\begin{aligned}
0 D=0 \\
1 D=8 \\
3 D=8 \\
4 D=20
\end{aligned} \quad \rightarrow\left(\begin{array}{l}
0 \\
1 \\
3 \\
4
\end{array}\right)(D)=\left(\begin{array}{l}
0 \\
8 \\
8 \\
20
\end{array}\right)
$$

There is no solution, so we solve the normal equation $A^{\top} A \hat{x}=A^{\top} \overrightarrow{0}$

$$
\left.\begin{array}{c}
\left(\begin{array}{llll}
0 & 1 & 3 & 4
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
3 \\
4
\end{array}\right)(P)=\left(\begin{array}{llll}
0 & 1 & 3 & 4
\end{array}\right)\left(\begin{array}{l}
0 \\
8 \\
8 \\
20
\end{array}\right) \\
26 \\
D
\end{array}\right)
$$

Picture:

4.3.12. Project the data $\vec{b}=\left(b_{1}, \ldots, b_{m}\right)$ onto the line through $\vec{a}=(1,1, \cdots, 1)$.
 some number \hat{x}.

By orthogonality, we must have

$$
\begin{array}{r}
\vec{a}^{\top} \vec{e}=\vec{a}^{\top}(\vec{b}-\vec{a} \hat{x})=0 \\
\vec{a}^{\top} \vec{b}-\vec{a}^{\top} \vec{a} \hat{x}=0 \\
\vec{a}^{\top} \vec{b}=\vec{a}^{\top} \vec{a} \hat{x}
\end{array}
$$

(a) Solve this: $\vec{a}^{\top} \vec{a} \hat{x}=\vec{a}^{\top} \vec{b}$ is

$$
\left.\begin{array}{c}
\left(\begin{array}{lll}
1 & 1 & \cdots
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \hat{x}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
k_{1} \\
\vdots \\
k_{m}
\end{array}\right) \\
m \hat{x}
\end{array}\right)
$$

- The average/mean of the b values.
(b) The error vector is

$$
\vec{e}=\vec{b}-\vec{a} \hat{x}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)-\hat{x}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
b_{1}-\hat{x} \\
b_{2}-\hat{x} \\
b_{m}-\hat{x}
\end{array}\right)
$$

Its squared length is the variance

$$
\|\vec{e}\|^{2}=\left(b_{1}-\hat{x}\right)^{2}+\left(b_{2}-\hat{x}\right)^{2}+\cdots+\left(b_{m}-\hat{x}\right)^{2}
$$

Its length is the standard deviation

$$
\|\vec{e}\|=\sqrt{\left(b_{1}-\hat{x}\right)^{2}+\cdots+\left(b_{m}-\hat{\gamma}\right)^{2}}
$$

(a) Example: $\vec{t}_{6}=(1,2,6)$

To find the bert horizontal line (which is just the vnean of the b's) we project \vec{b} onto the line through

$$
\vec{z}=(1,1,1)
$$

The error $15 \perp$ to the projection

$$
\left(\begin{array}{lll}
-2 & -1 & 3
\end{array}\right)\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)=0
$$

The matrix that performs the projection onto $\vec{a}=(1,1,1)$ is

$$
P=\frac{\vec{a} \vec{a} T}{\vec{a}^{T} \vec{a}}=\frac{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)}{\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{1}{1}}=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Check:

$$
\vec{p} \vec{b}=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)
$$

It works
4.3.17. Find the line $C+D t=b$ closest to the data points

$$
\binom{t}{b}=\binom{-1}{7},\binom{1}{7},\binom{2}{21}
$$

Plug in:

$$
\begin{aligned}
& C+D(-1)=7 \\
& C+D(1)=7 \\
& C+D(2)=21
\end{aligned} \rightarrow\left(\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D}=\left(\begin{array}{l}
7 \\
7 \\
21
\end{array}\right)
$$

Least Squares:

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
7 \\
7 \\
21
\end{array}\right) \\
\left(\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right)\binom{C}{D}=\left(\begin{array}{ll}
3 & 5 \\
4 & 2
\end{array}\right) \\
\Longrightarrow\binom{C}{D}=\binom{9}{4} .
\end{gathered}
$$

4.3.22. Find the line $C+D t=6$ closest to the points $\binom{t}{b}=\binom{-2}{4},\binom{-1}{2},\binom{0}{-1},\binom{1}{0},\binom{2}{0}$

Normal Equation:

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D}=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-1 & -2 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
4 \\
2 \\
-1 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right)\binom{C}{D}=\binom{5}{-10}
\end{aligned}
$$

The line is

$$
\Rightarrow\binom{C}{D}=\binom{1}{-1} \quad 1-t=b
$$

Additional Problems (not assigned)
We say that P is a "projection M atax" if $P T=P$ and $P^{2}=P$.
A.1. Show $P=A\left(A^{\top} A\right)^{-1} A^{\top}$ is a projection matrix

$$
\begin{aligned}
P^{2} & =P ? \\
P^{2} & \left.=\left[A\left(A^{\top} A\right)^{-1} A^{\top}\right] \mid A\left(A^{\top} A\right)^{-1} A^{\top}\right] \\
& =A\left(A^{\top} A\right)^{-1}\left(A^{\top} A\right)\left(A^{\top} A\right)^{-1} A^{\top} \\
& =A\left(A^{\top} A\right)^{-1} A^{\top}=P \\
& =A\left(A^{\top} A\right)^{-1} A^{\top}=P \\
P^{\top} & =P ? \\
P^{\top} & =\left(A\left(A^{\top} A\right)^{-1} A^{\top}\right)^{\top} \\
& \left.=(A T)^{\top}\left[A^{\top} A\right)^{-1}\right]^{\top}(A)^{\top} \\
& =A\left[\left(A^{\top} A\right)^{\top}\right]^{-1} A^{\top} \\
& =A\left[(A)^{\top}\left(A^{\top}\right)^{\top}\right]^{-1} A^{\top} \\
& =A\left(A^{\top} A\right)^{-1} A^{\top}=P
\end{aligned}
$$

A.2. If A is square and invertible, then

$$
\begin{aligned}
\left(A^{\top} A\right)^{-1} & =(A)^{-1}\left(A^{\top}\right)^{-1} \\
& =A^{-1}\left(A^{\top}\right)^{-1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
P & =A\left(A^{\top} A\right)^{-1} A^{\top} \\
& =A A^{-1}\left(A^{\top}\right)^{-1} A^{\top} \\
& =I \cdot I=I=
\end{aligned}
$$

In this case we are projecting onto The full space. How do we project onto the full space? Do nothing ! ie. the identity function
A.3. If $P^{T}=P$ and $P^{2}=P$, then

$$
\begin{aligned}
(I-P)^{\top} & =I \cdot-P^{\top}=I-P \quad \sqrt{ } \text { and } \\
(I-P)^{2} & =(I-P)(I-P) \\
& =I I-P I-I P+P P \\
& =I-P-P+P 2 \\
& =I-P-P+P \\
& =I-P
\end{aligned}
$$

Hence $I-P$ is also a projection.
A.4. The projections P and $I-P$ satisfy

$$
\begin{aligned}
& P(I-P)=P I-P^{2} \\
&=P-P=0(\text { the matrix of }) \\
& \text { att Zees } 5
\end{aligned}
$$

We say that the projection functions P and $I-P$ ore "orthogonal" to each other. What does this mean?

Example:

