HW2 solutions from last year.
Problems 3 and 4 are slightly changed.

Problem 1:
(a)

(b) The equation $a x+b y=c$ represents a line in the Cartesian plane that is perpendicular to the vector (a, b).

To find one specific point on the line we will intersect it with the perpendicular line $(x, y)=t(a, b)=(t a, t b)$ to get

$$
\begin{gathered}
a x+b y=c \\
a(t a)+b(t b)=c
\end{gathered}
$$

$$
\begin{aligned}
t a^{2}+t b^{2} & =c \\
t\left(a^{2}+t^{2}\right) & =c \\
t & =c /\left(a^{2}+b^{2}\right)
\end{aligned}
$$

This corresponds to the point

$$
\binom{x}{y}=t\binom{a}{b}=\binom{a c /\left(a^{2}+b^{2}\right)}{b c /\left(a^{2}+b^{2}\right)}
$$

Picture:

(c) The line $a x+b y=c$ is \perp to the vector (a, b) and the line $a^{\prime} x+b^{\prime} y=c^{\prime}$ is 1 to the vector $\left(a^{\prime}, b^{\prime}\right)$. This implies that the two lines are 1 to each other if and only if
the vectors $(a, b) \&\left(a^{\prime}, b^{\prime}\right)$ are perpendicular to each other, i.e.,

$$
\begin{aligned}
& \binom{a}{b} \cdot\binom{a^{\prime}}{b^{\prime}}=0 \\
& a a^{\prime}+b b^{\prime}=0
\end{aligned}
$$

Remark: This is the same answer you get using the "gig h-school" method of "negative reciprocal slopes". But I Like this formula better because it still makes sense when one of the lines is vertical (slope ∞).

Problem 2:
(a)

(b) We are looking for the two points of intersection as shown in the picture. To compute them we first solve

$$
\begin{aligned}
4 x+3 y & =0 \\
3 y & =-4 x \\
y & =-4 / 3 x
\end{aligned}
$$

and then substitute

$$
\begin{aligned}
x^{2}+y^{2}=25 & \\
x^{2}+(-4 / 3 x)^{2} & =25 \\
x^{2}+16 / 9 x^{2} & =25 \\
25 / 9 x^{2} & =25 \\
x^{2} & =9 \\
x & = \pm 3
\end{aligned}
$$

The corresponding values of y are

$$
y=-4 / 3(3)=-4 \text { \& } y=-4 / 3(-3)=4
$$

Thus the two points if intersection are

$$
\binom{x}{y}=\binom{3}{-4} \quad \& \quad\binom{x}{y}=\binom{-3}{4}
$$

(c)

Both tangent lines are \perp to the vector $(3,-4)$ so the both have on equation of the form

$$
3 x-4 y=c
$$

The line containing point $(-3,4)$ has

$$
\begin{aligned}
c & =3 x-4 y \\
& =3(-3)-4(4) \\
& =-9-16=-25
\end{aligned}
$$

and the line containing point $(3,-4)$ has

$$
\begin{aligned}
c & =3 x-4 y \\
& =3(3)-4(-4) \\
& =9+16=25
\end{aligned}
$$

Problem 3:
(a) First we rewrite the vector equation as a system of two number equations
(*)

$$
\begin{aligned}
& x\binom{-1}{1}+y\binom{2}{0}=\binom{3}{2} \\
& \binom{-x+2 y}{x+0 y}=\binom{3}{2} \\
& \left\{\begin{aligned}
-x+2 y & =3 \\
x & =2
\end{aligned}\right.
\end{aligned}
$$

Now the solution is easy to see. substituting $x=2$ into the first equation gives

$$
\begin{aligned}
-2+2 y & =3 \\
2 y & =5 \\
y & =5 / 2
\end{aligned}
$$

and hence

$$
\binom{x}{y}=\binom{2}{5 / 2}
$$

(b) Interpreting this as the solution of the vector equation (A) gives the picture:

[To get from $(0,0)$ to $(3,2)$ we move 2 times in the $(-1,1)$ direction and then $5 / 2$ times in the $(2,0)$ direction (or the other way around).
(c) Interpreting this as the solution of the system ** gives the picture:

[The two lines meet at the point $\binom{2}{5 / 2}$.]

Problem 4:
(a) The intersection of the plones $x+2 y-z=0$ and $x+y+2 z=0$ is encoded by the system of equations

$$
\left\{\begin{array}{l}
x+2 y-z=0 \tag{1}\\
x+y+2 z=0
\end{array}\right.
$$

We can eliminate x from (1) by subtracting.
(1) $x+2 y-z=0$
(2) $x+y+2 z=0$
(1)-(2) $\quad y-3 z=0$.

Then we con eliminate y from (2) by subtracting
(2) $x+y+2 z=0$
(3) $y-3 z=0$
(2)-(3) $x+5 z=0$

We olotain the simpler, but equivalent, system

$$
\left\{\begin{array}{r}
x+5 z=0 \tag{4}\\
y-3 z=0
\end{array}\right.
$$

Now letting $z=t$ be free gives the solution

$$
\begin{aligned}
& x=-5 z=-5 t \\
& y=3 z=3 t \\
& z=z=1 t
\end{aligned} \quad \Longrightarrow \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=t\left(\begin{array}{c}
-5 \\
3 \\
1
\end{array}\right) .
$$

This is a line.
(b) Note that we con rewrite the Equations
(1) and (2) as

$$
\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 \quad \& \quad\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 .
$$

So we can also say that $(x, y, z)=t(-5,3,1)$ are precisely the vectors that are simultaneously perpendicular to both $(1,2,-1)$ \& $(1,1,2)$.

Picture:

(c) Now we introduce a third plane $x+y+z=-1$. Ts compute the intersection of this plane with the line $(x, y, z)=(-5 t, 3 t, t)$ we substitute to get

$$
\begin{aligned}
x+y+z & =-1 \\
-5 t+8 t+t & =-1 \\
-t & =-1 \\
t & =1
\end{aligned}
$$

Hence the point of intersection is.

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=1\left(\begin{array}{c}
-5 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{c}
-5 \\
3 \\
1
\end{array}\right)
$$

Picture:

(d) Finally, observe that the vector equation

$$
x\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+y\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+z\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right)
$$

is equivalent to the system of three number equations

$$
\left\{\begin{array}{l}
x+y+z=-1 \\
x+y+2 z=0 \\
x+2 y-z=0
\end{array}\right.
$$

And we already solved this system in parts (a) \& (c). The answer is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-5 \\
3 \\
1
\end{array}\right)
$$

Geometrically, we interpret this as the unique point of intersection of the three planes.

Picture omitted.

