Problems from 4th edition of Gilbert Strang's Introduction to Linear Algebra.

Section 1.1 solutions are included in the Week 1 Notes.

For the Section 1.2 problems, we recall the rules of vector arithmetic: for all vectors $\vec{u}, \vec{v}, \vec{w}$ and scalars a, b we have

$$
\begin{aligned}
& \vec{u}+\vec{v}=\vec{v}+\vec{u} \\
& \vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w} \\
& a(\vec{u}+\vec{v})=a \vec{u}+a \vec{v} \\
& (a+b) \vec{u}=a \vec{u}+b \vec{u} \\
& \vec{u} \bullet \vec{v}=\vec{v} \bullet \vec{u} \\
& a(\vec{u} \bullet \vec{v})=(a \vec{u}) \bullet \vec{v}=\vec{u} \bullet(a \vec{v}) \\
& \vec{u} \bullet(\vec{v}+\vec{w})=\vec{u} \bullet \vec{v}+\vec{u} \bullet \vec{w} .
\end{aligned}
$$

More succinctly, the dot product distributes over arbitrary linear combinations:

$$
\vec{u} \bullet(a \vec{v}+b \vec{w})=a(\vec{u} \bullet \vec{v})+b(\vec{u} \bullet \vec{w}) .
$$

1.2.4. For this problem we assume that \vec{v} and \vec{w} are unit vectors, i.e., that $\|v\|=\|\vec{w}\|=1$. This implies that

$$
\vec{v} \bullet \vec{v}=\|\vec{v}\|^{2}=1 \quad \text { and } \quad \vec{w} \bullet \vec{w}=\|\vec{w}\|^{2}=1 .
$$

Then we use the rules of vector arithmetic to compute the desired dot products.
(a)

$$
\vec{v} \bullet(-\vec{v})=\vec{v} \bullet(-1 \vec{v})=-1(\vec{v} \bullet \vec{v})=-1(1)=-1 .
$$

(b)

$$
\begin{aligned}
(\vec{v}+\vec{w}) \bullet(\vec{v}-\vec{w}) & =\vec{v} \bullet \vec{v}+\vec{w} \bullet \vec{v}+\vec{v} \bullet(-\vec{w})+\vec{w} \bullet(-\vec{w}) \\
& =\vec{v} \bullet \vec{v}+\vec{w} \bullet \vec{v}-\vec{v} \bullet \vec{w}-\vec{w} \bullet \vec{w} \\
& =\vec{v} \bullet \vec{v}+\vec{v} \bullet \vec{w}-\vec{v} \bullet \vec{w}-\vec{w} \bullet \vec{w} \\
& =\vec{v} \bullet \vec{v}-\vec{w} \bullet \vec{w} \\
& =1-1 \\
& =0 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
(\vec{v}+2 \vec{w}) \bullet(\vec{v}-2 \vec{w}) & =\vec{v} \bullet \vec{v}+(2 \vec{w}) \bullet \vec{v}+\vec{v} \bullet(-2 \vec{w})+(2 \vec{w}) \bullet(-2 \vec{w}) \\
& =\vec{v} \bullet \vec{v}+2(\vec{w} \bullet \vec{v})-2(\vec{v} \bullet \vec{w})-4(\vec{w} \bullet \vec{w}) \\
& =\vec{v} \bullet \vec{v}+2(\vec{v} \bullet \vec{w})-2(\vec{v} \bullet \vec{w})-4(\vec{w} \bullet \vec{w}) \\
& =\vec{v} \bullet \vec{v}-4(\vec{w} \bullet \vec{w}) \\
& =1-4 \\
& =-3 .
\end{aligned}
$$

1.2.5. Consider the vectors $\vec{v}=(3,1)$ and $\vec{w}=(2,1,2)$. We can find unit vectors in the same directions as follows:

$$
\vec{u}_{1}=\frac{ \pm 1}{\|\vec{v}\|} \vec{v}=\frac{ \pm 1}{\sqrt{10}}\binom{3}{1} \quad \text { and } \quad \vec{u}_{2}=\frac{ \pm 1}{\|\vec{w}\|} \vec{w}=\frac{ \pm 1}{\sqrt{9}}\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)
$$

To find vectors that are perpendicular to \vec{u}_{1} and \vec{u}_{2} we first observe that $(-1,3)$ is perpendicular to $\vec{v}=(3,1)$ (and also to \vec{u}_{1}) because their dot product is zero:

$$
\binom{-1}{3} \cdot\binom{3}{1}=(-1) 3+3(1)=0
$$

Then to find a unit vector perpendicular to \vec{u}_{1} we take

$$
\vec{U}_{1}=\frac{ \pm 1}{\left\|\binom{-1}{3}\right\|}\binom{-1}{3}=\frac{ \pm 1}{\sqrt{10}}\binom{-1}{3} .
$$

To find a vector perpendicular to $\vec{w}=(2,1,2)$ consider any $\vec{x}=(x, y, z)$ and suppose that we have

$$
\begin{aligned}
& \left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 \\
& 2 x+y+2 z=0
\end{aligned}
$$

There is a whole plane of possible solutions to we just pick one at random: say $\vec{x}=(1,0,-1)$. Then we define

$$
\vec{U}_{2}=\frac{ \pm 1}{\left\|\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\|}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\frac{ \pm 1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

1.2.6.

(a) Describe every vector $\vec{w}=\left(w_{1}, w_{2}\right)$ that is perpendicular to $\vec{v}=(2,-1)$.

They form a line. The equation of the line is $2 w_{1}-w_{2}=0$.
(b) The vectors that are pendicular to $\vec{V}=(1,1,1)$ lie on a
plane.
(c) The vectors that are perpendicular to $(1,1,1)$ and $(1,2,3)$ lie on a line.
Reason: The vectors perpendicular to $(1,1,1)$ form a plane and the vectors perpendicular to $(1,2,3)$ form a different plane. The vectors perpendicular to both form the intersection of these two planes, which is a line. In class we showed that this line can be described as $t(1,-2,1)$, where the vector $(1,-2,1)$ is called the cross product of $(1,1,1)$ and $(1,2,3)$.
1.2.7. Find the angle θ between each pair of vectors \vec{v}, \vec{w}. Recall that the angle satisfies the equation

$$
\cos \theta=\frac{\vec{v} \bullet \vec{w}}{\|v\| \cdot\|\vec{w}\|}=\frac{\vec{v} \bullet \vec{w}}{\sqrt{\vec{v} \bullet \vec{v}} \cdot \sqrt{\vec{w} \bullet \vec{w}}}
$$

(a) For $\vec{v}=(1, \sqrt{3})$ and $\vec{w}=(1,0)$ we have $\vec{v} \bullet \vec{v}=4, \vec{w} \bullet \vec{w}=1$ and $\vec{v} \bullet \vec{w}=1$. Hence we get

$$
\cos \theta=\frac{1}{\sqrt{4} \cdot \sqrt{1}}=\frac{1}{2} \quad \Longrightarrow \quad \theta= \pm 60^{\circ}
$$

(b) For $\vec{v}=(2,2,-1)$ and $\vec{w}=(2,-1,2)$ we have $\vec{v} \bullet \vec{v}=9, \vec{w} \bullet \vec{w}=9$ and $\vec{v} \bullet \vec{w}=0$. Hence we get

$$
\cos \theta=\frac{0}{\sqrt{9} \cdot \sqrt{9}}=0 \quad \Longrightarrow \quad \theta= \pm 90^{\circ}
$$

(c) For $\vec{v}=(1, \sqrt{3})$ and $\vec{w}=(-1, \sqrt{3})$ we have $\vec{v} \bullet \vec{v}=4, \vec{w} \bullet \vec{w}=4$ and $\vec{v} \bullet \vec{w}=2$. Hence we get

$$
\cos \theta=\frac{2}{\sqrt{4} \cdot \sqrt{4}}=\frac{1}{2} \quad \Longrightarrow \quad \theta= \pm 60^{\circ}
$$

(d) For $\vec{v}=(3,1)$ and $\vec{w}=(-1,-2)$ we have $\vec{v} \bullet \vec{v}=10, \vec{w} \bullet \vec{w}=5$ and $\vec{v} \bullet \vec{w}=-5$. Hence we get

$$
\cos \theta=\frac{-5}{\sqrt{10} \cdot \sqrt{5}}=\frac{-1}{\sqrt{2}} \quad \Longrightarrow \quad \theta= \pm 135^{\circ}
$$

1.2.8. True or False?
(a) If \vec{u} is perpendicular (in three dimensions) to \vec{v} and \vec{w}, those vectors \vec{v} and \vec{w} are parallel. Algebraically we assume that $\vec{u} \bullet \vec{v}=0$ and $\vec{u} \bullet \vec{w}=0$ and the statement is that there exists some scalar t such that $\vec{v}=t \vec{w}$.

FALSE. For example, consider the standard basis vectors $\vec{u}=(1,0,0), \vec{v}=(0,1,0)$ and $\vec{w}=(0,0,1)$. Then \vec{u} is perpendicular to both \vec{v} and \vec{w} because

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \bullet\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=0 \quad \text { and } \quad\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \bullet\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=0
$$

However, \vec{v} and \vec{w} are not parallel because there is no scalar t for which

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=t\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
t
\end{array}\right) .
$$

The reason is because $1 \neq 0$. [Remark: The same statement is TRUE for vectors in the plane. Can you prove it?]
(b) If \vec{u} is perpendicular to \vec{v} and \vec{w}, then \vec{u} is perpendicular to $\vec{v}+2 \vec{w}$. Algebraicaly we assume that $\vec{u} \bullet \vec{v}=0$ and $\vec{u} \bullet \vec{w}=0$ and the statement says that $\vec{u} \bullet(\vec{v}+2 \vec{w})=0$.

This is TRUE because

$$
\vec{u} \bullet(\vec{v}+2 \vec{w})=(\vec{u} \bullet \vec{v})+2(\vec{u} \bullet \vec{w})=0+2(0)=0 .
$$

(c) If \vec{u} and \vec{v} are perpendicular unit vectors then $\|\vec{u}-\vec{v}\|=\sqrt{2}$.

TRUE. The fact that \vec{u} and \vec{v} are perpendicular unit vectors means that $\vec{u} \bullet \vec{u}=1$, $\vec{u} \bullet \vec{v}=0$ and $\vec{v} \bullet \vec{v}=0$. Then we have

$$
\begin{aligned}
\|\vec{u}-\vec{v}\|^{2} & =(\vec{u}-\vec{v}) \bullet(\vec{u}-\vec{v}) \\
& =\vec{u} \bullet \vec{u}-2(\vec{u} \bullet \vec{v})+\vec{v} \bullet \vec{v} \\
& =1-2(0)+1 \\
& =2 .
\end{aligned}
$$

