This is a closed book test. No electronic devices are allowed. If two students submit exams in which any solution has been copied, both students will receive a score of zero. There are 7 pages and 7 problems.

Problem 1. Consider the plane x + 2y - z = 0 in \mathbb{R}^3 .

(a) Tell me a normal vector to the plane.

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

(b) Tell me a normal vector of length 1,

$$\frac{1}{\|\vec{\lambda}\|} \vec{\lambda} = \frac{1}{\sqrt{6}} \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix}$$

(c) Compute the matrix Q that projects orthogonally onto the normal line.

$$Q = \vec{a} (\vec{a}^{T} \vec{a})^{-1} \vec{a}^{T} = {1 \choose 2} ((12-1) {1 \choose 2})^{-1} (12-1)$$

$$= {1 \choose 2-1} (6)^{-1} (12-1) = {1 \choose 6} {1 \choose 2-1} (12-1)$$

$$= {1 \choose 6} {1 \choose 2-1} = {1 \choose 6} {1 \choose 2-1}$$

$$= {1 \choose 6} {1 \choose 2-1} = {1 \choose 2-1}$$

(d) Compute the matrix P that projects orthogonally onto the plane. [Hint: Use your answer from part (c) to save time.]

$$P = I - Q$$

$$= \frac{1}{6} \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$$

Problem 2. The following matrix rotates vectors in \mathbb{R}^2 counterclockwise by 53.13°:

$$R = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}.$$

(You can just believe this. You don't have to show it.)

(a) Rotate the column vector (1,1) counterclockwise by 53.13°.

$$R\binom{1}{1} = \frac{1}{5}\binom{3-4}{4}\binom{1}{1} = \frac{1}{5}\binom{-1}{7}$$

(b) Compute the matrix that rotates vectors clockwise by 53.13°.

$$det(R) = 9/25 + 16/25 = 25/25 = 1, so$$

$$R^{-1} = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}$$

(c) Rotate the column vector (1,1) clockwise by 53.13°.

$$R^{-1}\begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{5}\begin{pmatrix} 3&4\\-4&3 \end{pmatrix}\begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{5}\begin{pmatrix} 7\\-1 \end{pmatrix}$$

(d) Compute the matrix that rotates counterclockwise by $106.26^{\circ} (= 2 \times 53.13^{\circ})$.

$$R^{2} = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$$

$$= \frac{1}{25} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$$

$$= \frac{1}{25} \begin{pmatrix} 9 & -16 & -12 & -12 \\ 12 & +12 & -16 & +9 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} -7 & -24 \\ 24 & -7 \end{pmatrix}$$

Problem 3. Consider the following three planes in \mathbb{R}^3 :

$$x + y + z = 0, (1)$$

$$x + 2y - z = 0, (2)$$

$$x + 0y + z = 1. \tag{3}$$

(a) Compute the intersection of the first and second planes. [Hint: It's a line.]

$$\begin{pmatrix} 0 & 1 & 1 & | & 0 \\ 1 & 2 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & -2 & | & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & | & 3 & | & 0 \\ 0 & 1 & +2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ 2 \\ z \end{pmatrix} = \begin{pmatrix} -3s \\ 2s \\ s \end{pmatrix} = s \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix},$$

$$\downarrow_{e+7} = S$$

(b) Compute the intersection of second and third planes. [Hint: It's a line.]

$$\begin{pmatrix}
0 & 0 & 1 & | & 1 \\
1 & 2 & -1 & | & 0
\end{pmatrix}
\longrightarrow \begin{pmatrix}
1 & 0 & 1 & | & 1 \\
0 & 2 & -2 & | & -1
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 0 & 1 & | & 1 \\
0 & 1 & 1 & | & -1/2
\end{pmatrix}
\longrightarrow \begin{pmatrix}
x \\
5 \\
2
\end{pmatrix} = \begin{pmatrix}
1 - t \\
-1/2 + t \\
t
\end{pmatrix} = \begin{pmatrix}
1 \\
-1/2 \\
0
\end{pmatrix} + t\begin{pmatrix}
-1 \\
1 \\
1
\end{pmatrix}$$
Let $z = t$

(c) Compute the intersection of the lines from parts (a) and (b). [Hint: It's a point.]

Multiple ways to do this. I'll intersect the line from (a) with the plane (3).

$$\begin{array}{c} x + 2 = 1 \\ (-3s) + (s) = 1 \\ -2s = 1 \\ s = -1/2 \end{array}$$

$$\begin{array}{c} x \\ 9 \\ 2 \end{array} = -\frac{1}{2} \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3/2 \\ -1 \\ -1/2 \end{pmatrix}.$$

Problem 4. Consider the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

(a) Use the Gauss-Jordan method to compute the inverse of A.

$$(AII) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \stackrel{R_1}{R_2}$$

(b) Solve the system $A\vec{x} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$. [Hint: Use your answer from (a) to save time.]

$$\overrightarrow{\chi} = A^{-1} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Problem 5. Consider the following system:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & b \\ 0 & 1 & 1 \end{pmatrix} \vec{x} = \begin{pmatrix} 1 \\ 0 \\ c \end{pmatrix}.$$

Tell me some values for b and c such that

(a) the system has a unique solution \vec{x} .

Then the solution is

$$\vec{x} = A^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 - 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{from problem 4}.$$

(b) the system has no solution \vec{x} .

$$b=1 \text{ and } c \neq 0. \text{ Then}$$

$$\begin{pmatrix} 111 & 1 & 1 & 1 \\ 011 & 0 & 0 & 1 & 1 \\ 011 & c & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 111 & 1 & 1 & 1 \\ 011 & 0 & 0 & 0 & 0 \\ 011 & c & 0 & 0 & 0 \end{pmatrix}$$
impossible.

(c) the system has infinitely many solutions \vec{x} .

A has shape nxm

Problem 6. Consider the matrix $A = (\vec{a}_1 \ \vec{a}_2 \ \cdots \ \vec{a}_m)$, where \vec{a}_i is the *i*th column. Suppose that A has n rows, so the columns are vectors in \mathbb{R}^n .

(a) Let \vec{x} be a vector in \mathbb{R}^n . Write a single matrix equation to say that \vec{x} is perpendicular to all the columns of A.

(b) You can think of your matrix equation from part (a) as a system of how many linear equations, in how many unknowns?

(c) The solution to your equation in part (a) most likely has how many dimensions?

(d) Now let \vec{b} be any point in \mathbb{R}^n and let \vec{p} be the point in the column space of A that is **closest** to \vec{b} . Write a formula for \vec{p} in terms of A and \vec{b} .

Problem 7. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n with $\vec{u}^T \vec{v} \neq 0$, and consider the $n \times n$ matrix

$$A = \frac{\vec{u} \, \vec{v}^T}{\vec{u}^T \vec{v}}. = \left(\frac{1}{\vec{u}^T \vec{v}}\right) \vec{u} \vec{v}^T$$

$$1 \times 1 \qquad n \times n$$

(a) For all vectors \vec{x} , show that $A\vec{x}$ is on the line generated by \vec{u} .

$$A\vec{\chi} = \frac{1}{4\tau \vec{r}} (\vec{x} \vec{r}) \vec{\chi} = \left(\frac{1}{4\tau \vec{r}}\right) \vec{u} (\vec{r} \vec{r} \vec{\chi}) = \left(\frac{\vec{r} \vec{r}}{4\tau \vec{r}}\right) \vec{u}$$

Number

Number

(b) The line generated by \vec{u} is an eigenspace for A. What is the eigenvalue?

(c) Now let \vec{x} be any vector **perpendicular** to \vec{v} . Show that $A\vec{x} = \vec{0}$.

Suppose
$$\vec{\nabla} \vec{x} = 0$$
. Then from. (a) we have
$$A\vec{x} = (\vec{x})\vec{x} = 0 \vec{x} = \vec{0}$$
.

(d) Is the matrix Λ invertible? If so, tell me its inverse.

NO, because there exists
$$\vec{x} \neq \vec{0}$$
 such that $A\vec{x} = \vec{0}$. [If A were invertible we would get $\vec{x} = A^{-1}\vec{0} = \vec{0}$, contradiction.]