Math 210 E Drew Armstrong
Final Exam Monday, May 6, 2013

This is a closed book test. No electronic devices are allowed. If two students submit exams
in which any solution has been copied, both students will receive a score of zero.
There are 7 pages and 7 problems.

Problem 1. Consider the plane z + 2y — z = 0 in R3,
(a) Tell me a normal vector to the plane.
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(b) Tell me a normal vector of length 1.
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(c) Compute the matrix @ that projects orthogonally onto the normal line.
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(d) Compute the matrix P that projects orthogonally onto the plane. [Hint: Use your
answer from part (c) to save time.]
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Problem 2. The following matrix rotates vectors in R? counterclockwise by 53.13°:
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(You can just believe this. You don’t have to show it.)

(a) Rotate the column vector (1,1) counterclockwise by 53.13°.
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(b) Compute the matrix that rotates vectors clockwise by 53.13°.
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(c) Rotate the column vector (1,1) clockwise by 53.13°.
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(d) Compute the matrix that rotates counterclockwise by 106.26°(= 2 x 53.13°).
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Problem 3. Consider the following three planes in R3:

z+y+z=0, (1)
z+2y—2=0, . (2)
z4+0y+z=1. (3)

(a) Compute the intersection of the first and second planes. [Hint: It’s a line.]
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(b) Compute the intersection of second and third planes. [Hint: It's a line.]
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(c) Compute the intersection of the lines from parts (a) and (b). [Hint: It’s a point.]
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(a) Use the Gauss-Jordan method to compute the inverse of A.
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Problem 4. Consider the matrix A = (
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(b) Solve the system AT = (1) . [Hint: Use your answer from (a) to save time.]
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Problem 5. Consider the following system:
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Tell me some values for b and ¢ such that

(a) the system has a unique solution .
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(b) the system has no solution .
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(c) the system has infinitely many solutions .
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Problem 6. Consider the matrix A = (d‘l dg - d'm), where d; is the 7th column.
Suppose that A has n rows, so the columns are vectors in R".

(a) Let Z be a vector in R”. Write a single matrix equation to say that Z is perpendic-
ular to all the columns of A.
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(b) You can think of your matrix equation from part (a) as a system of how many
linear equations, in how many unknowns?
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(c) The solution to your equation in part (a) most likely has how many dimensions?
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(d) Now let b be any point in R™ and let § be the point in the column space of A that
is closest to b. Write a formula for p'in terms of A and b.
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Problem 7. Let % and 7 be vectors in R” with @77 # 0, and consider the n X n matrix
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(a) For all vectors &, show that AZ is on the line generated by .
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(b) The line generated by @ is an eigenspace for A. What is the eigenvalue?
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(c) Now let & be any vector perpendicular to ¢. Show that AZ =0.
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(d) Is the matrix A invertible? If so, tell me its inverse.
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