Exam 1A

Math 210 F
Friday March 3

Spring 2016

This is a closed book test. No electronic devices are allowed. If two students submit exams
in which any solution has been copied, both students will receive a score of zero.

There are 5 pages and 5 problems, each worth 6 points.

Problem 1. Let Z and § be two vectors (in some-dimensional space) such that
IZl=2 I§l=v2  and Zeg=2.

(a) Find the cosine of the angle between & and ¢/ (and the angle itself, if you know it).
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(b) Tell me the values of the dot products Z e & and 7' e 7.
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(c) Expand the expression (§ — &) e (§ — %) and use the result to find the distance
between the points two points Z and §.
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Problem 2. Consider the following system of 3 linear equations in 3 unknowns:

z+ y+ 22=0
T+ 2y + 3z =1
0+ y+ z=1

(a) Put the system in reduced row echelon form (RREF).
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(b) Use your answer from part (a) to write out the complete solution of the system.
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(c) Fill in the blanks: Geometrically, this system represents three Ql INLS  that
intersect at a __| | N 0




Problem 3. Now consider the modified system of 3 linear equations in 3 unknowns, where
¢ is an arbitrary constant:

z+ y+ 2z2=20
z + 2y + 3z =
0+ v+ z2=c

(a) Put the system in upper-staircase form (you don’t need to put it in RREF).
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(b) Use part (a) to find all values of ¢ such that the system has no solution.
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(¢) If ¢ = 1 then we already saw in Problem 2 that the system has a solution. Use
your solution to express the vector (0,1,1) as a specific linear combination of the
vectors (1,1,0), (1,2,1), and (2,3,1).
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Problem 4. Let A be an m x n matrix (i.e. with m rows and n columns) and let B be a
p X ¢ matrix (i.e. with p rows and ¢ columns).

(a) Fill in the blanks:
We think of A as a function from l -dimensional space to m -dimensional space.

We think of B as a function from g -dimensional space to P -dimensional space.
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(b) Finish the sentence: The product matrix AB is defined only when ...
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(c) Fill in the blanks: If the product matrix AB is defined then we think of it as a
function from f} -dimensional space to _yy\ __-dimensional space.
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(d) Finish the sentence: If the matrix AB is defined then its entry in the ith row and
jth column is equal to ...

(it row of A) - (ddl/\ ol 4f B)



Problem 5. Consider the following two matrices and one vector:
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(a) Find the vector BZ by computing the dot product of & with the rows of B.
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(b) Express the vector A(BZ) as a linear combination of the columns of A.
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(c) Now find the matrix C such that for all numbers z,y, z we have CT = A(BZ).
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