This is a closed book test. No electronic devices are allowed. If two students submit exams in which any solution has been copied, **both students will receive a score of zero**. There are 5 pages and 5 problems, each worth 6 points.

Problem 1. Consider the vectors $\vec{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ in the Cartesian plane.

(a) Draw the set of vectors $s\vec{u} + t\vec{v}$, for all $s \ge 0$ and $t \ge 0$.

(b) Draw the set of vectors $s\vec{u} + t\vec{v}$, for all $0 \le s \le 2$ and $0 \le t \le 1$.

(c) Draw the set of vectors $s\vec{u} + t\vec{v}$, for all s + t = 1.

Problem 2. Consider the vectors
$$\vec{u} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ in Cartesian space.

(a) Let \vec{x} be a vector perpendicular to **both** \vec{u} and \vec{v} . That is, $\vec{x} \cdot \vec{u} = 0$ and $\vec{x} \cdot \vec{v} = 0$. Write down the matrix equation $A\vec{x} = \vec{b}$ that \vec{x} must satisfy.

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right) \overrightarrow{\chi} = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

(b) Solve the system $A\vec{x} = \vec{b}$ from part (a) to find all such vectors \vec{x} .

(c) Tell me the equation of the plane described by $s\vec{u} + t\vec{v}$ for all s, t.

The plane with normal line
$$2(1)$$
 15
$$-x+y+2=0.$$

(d) Tell me the equation of a different plane, parallel to the plane from part (c).

$$-x+y+z=k$$
for some $k\neq 0$.

Problem 3.

(a) Let A and B be matrices such that the product AB exists. Finish the sentence: The j-th column of AB is...

(b) Now let A be a 3×3 invertible matrix. Finish the sentence: The **1st column** of AA^{-1} is...

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

(c) Now let $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ and let \vec{x} be the **1st column** of A^{-1} . Write a matrix equation that \vec{x} must satisfy.

From (a) and (b):
$$A \left(1s + col \text{ of } A^{-1}\right) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

$$A \overrightarrow{A} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

(d) Solve your equation to find \vec{x} . (I don't want to know the whole matrix A^{-1} . I just want to know the 1st column.)

Hence
$$\vec{\chi} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Problem 4. Consider two points (i.e. column vectors) \vec{u} and \vec{v} in *n*-dimensional space.

(a) Consider the set of points $t\vec{u} + (1-t)\vec{v}$ for all t. **Describe** this set geometrically.

(b) Suppose that $A\vec{u} = \vec{b}$ and $A\vec{v} = \vec{b}$ for some matrix A and vector \vec{b} . Show that the **midpoint** also solves this equation: i.e. show that $A(\frac{1}{2}(\vec{u} + \vec{v})) = \vec{b}$.

$$A(\frac{1}{2}(\vec{a}+\vec{r})) = \frac{1}{2}A(\vec{a}+\vec{r})$$

$$= \frac{1}{2}A\vec{a} + \frac{1}{2}A\vec{r}$$

$$= \frac{1}{2}\vec{b} + \frac{1}{2}\vec{b} = \vec{b}$$

(c) If $A\vec{u} = \vec{b}$ and $A\vec{v} = \vec{b}$, show that we have $A(t\vec{u} + (1-t)\vec{v}) = \vec{b}$ for all t.

$$A(t + (1-t) = t + (1-t) A = t + (1-t) A = t + (1-t) B =$$

(d) Finish the sentence: If a system of linear equations has at least **two** solutions, then it must have...

Problem 5.

(a) Fill in the blanks: Any matrix A with m rows and n columns can be though of as a function from $_{\sim}$ -dimensional space to $_{\sim}$ -dimensional space.

(b) Finish the sentence: If the matrix A has m rows and n columns, then the matrix equation $A\vec{x} = \vec{b}$ can be thought of **geometrically** as the intersection of...

m hyperplanes in n-dimensional space

- (c) Fill in the blank: In general (for a **typical** matrix A), the solution of the equation $A\vec{x} = \vec{b}$ from part (b) can be described using $(\vec{b} + \vec{b})$ free parameters.
- (d) Finish the sentence: A collection of 5 hyperplanes in 5-dimensional space **most** likely intersect in...

a point

5-5 = O dimensional