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Although the origins of the theory of matrices can be traced back to the 18th 
century and although it was not until the 20th century that it had become sufficient
ly absorbed into the mathematical mainstream to warrant extensive treatment in 
textbooks and monographs, it was truly a creation of the 19th century. 

When one contemplates the history of matrix theory, the name that immediately 
comes to mind is that of Arthur Cay ley. In 1858 Cayley published A memoir on 
the theory of matrices in which he introduced the term "matrix" for a square 
array of numbers and observed that they could be added and multiplied so as to 
form what we now call a linear associative algebra. Because of this memoir, his
torians and mathematicians alike have regarded Cayley as the founder of the theory 
of matrices; he laid the foundations in his 1858 memoir, so the story goes, upon 
which other mathematicians were then able to erect the edifice we now call the 
theory of matrices. 

For convenience I shall refer to this interpretation of the history of matrix theory 
as the Cayley-as-Founder view. It is a very simplistic interpretation which, as I will 
indicate, does not make much historical sense. The history of the theory of matrices 
is much more complex than the Cayley-as-Founder view would imply. Indeed its 
history is truly international in scope and hence seems an especially appropriate 
subject for a Congress such as this. I will begin by indicating several reasons why 
Cayley's memoir of 1858 does not have the historical significance that the Cayley-
as-Founder view suggests. 

In the first place, Cayley's celebrated memoir went generally unnoticed, especial
ly outside of England, until the 1880's. This was before the days of comprehensive 
abstracting journals—the first began ten years later in 1868—and Cayley had 
published his memoir in the Transactions of the Royal Society of London, some-
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thing that does not seem to have been widely read for its mathematical content. 
Secondly, the ideas Cayley expressed in 1858 were not particularly original. The 

idea of representing a linear substitution (i.e., a linear transformation) by the square 
array of its defining coefficients is already found in Gauss's treatment of the arith
metical theory of quadratic forms as presented in his Disquisitiones arithmeticae of 
1801. There we also find the idea of composing two linear substitutions to form a 
third and the idea of representing substitutions by single letters for convenience. 

Furthermore Gauss's notational practices were carried one step further by 
Eisenstein [1], [2] in his efforts to develop further the general theory of forms 
envisioned by Gauss. Eisenstein observed that if linear substitutions (in any number 
of variables) are considered as entities and denoted by letters, then they can be 
added and multiplied much as ordinary numbers, except, as he stressed, the order 
of multiplication does matter: »ST need not be the same as TS. Eisenstein also 
introduced the common algebraic notation for products, inverses and powers of 
linear substitutions and used it to good advantage in his papers on the arithmetical 
theory of forms during the period 1844-1852 (the year of his untimely death). In 
the early 1850's, Eisenstein's contemporary, Charles Hermite, who was in contact 
with Eisenstein, continued the latter's use of the symbolical algebra of linear sub
stitutions, both in his work on the theory of forms and on the transformation of 
abelian functions. 

Thus by the mid-1850's the idea of treating linear substitutions as objects which 
can be treated algebraically much like ordinary numbers was not very novel. Hence 
it is not entirely surprising to find that during the period when Cayley's 1858 
memoir lay unread, two other mathematicians, Laguerre in France and Frobenius 
in Switzerland, further developed the consequences of the symbolical algebra of 
linear substitutions in a fashion similar to that taken by Cayley but without a 
knowledge of Cayley's memoir. Laguerre's work, which was published in 1867 in 
the journal of the École Polytechnique, suffered the same fate as Cayley's 1858 
memoir. Frobenius' work was published in 1877 in Crelle's journal—one of the 
leading journals of the time—and was more widely known. Frobenius' paper was 
also much more substantial than those by Laguerre and Cayley, and I shall have 
more to say about it further on. 

There is another reason why the Cayley-as-Founder view of the history of matrix 
theory is misleading. By focusing, as it does, upon the form of the theory, i.e., the 
matrix symbolism, it tends to ignore its content', the concepts and theorems that 
make it a bona fide theory. For example : the notion of an eigenvalue, the classifica
tion of matrices into types, such as symmetric, orthogonal, Hermitian, unitary, 
etc., and the theorems on the nature of the eigenvalues of the various types and, 
above all, the theory of canonical matrix forms—in short, what I shall refer to as 
the spectral theory of matrices. 

Spectral theory did not originate with, or depend upon, the work of Cayley. It 
originated in the 18th century when various physical investigations led to the con
sideration of eigenvalue problems. During the 19th century these problems were 
extricated from their physical contexts and transformed into a purely mathematical 
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theory at the hands of mathematicians such as Cauchy, Jacobi, Kronecker, Weier-
strass and Camille Jordan. This activity spanned, roughly, the 50-year period from 
1826-1876, and Cayley played no role in these developments. It was a spectral 
theory of linear substitutions and quadratic and bilinear forms. 

Because spectral theory is an important part of the theory of matrices, I would 
like to make a few remarks about its history at this point, particularly about the 
contributions of Cauchy and Weierstrass. The spectral theory of the 19th century 
was initiated by Cauchy in a paper of 1829 [3]. There he gave the first valid proof 
that the eigenvalues of an 77-by-/7 symmetric matrix must be real. (Cauchy did use 
matrices but called them "systems".) The significance of Cauchy's paper and its 
relation to the work of the 18th century geometers, however, have not been cor
rectly portrayed by historians, and I would therefore like to say a few things along 
these lines. 

One of the great achievements of the 18th century geometers was the successful 
application of the new analysis of the 17th century to problems in terrestrial and 
celestial mechanics. In the course of making such applications they were led to 
consider eigenvalue problems. Most eigenvalue problems arose in connection with 
the integration of systems of linear differential equations with constant coefficients. 
It was the physical contexts of these equations, i.e., stability considerations, that 
focused interest on the reality of the eigenvalues. The 18th century geometers had 
not correctly worked out the solution to these differential equations when multiple 
roots exist, but they could handle the case of distinct roots quite well—thanks 
especially to the work of Lagrange—and they could see that stability required that 
the eigenvalues be real. 

As long as the system of differential equations was sufficiently simple—i.e., as 
long as most of the coefficients were zero—reality could be established by special 
means, for example by actually solving for the eigenvalues. But in the second half 
of the 18th century the work of Lagrange and Laplace led to the consideration of 
differential equations and eigenvalue problems of a much more general nature— 
i.e., the coefficients were not specific numbers. The problem of establishing the 
reality of the eigenvalues seemed a terribly difficult problem in these cases, for it 
meant demonstrating the reality of the roots of a very general wth degree polynomial 
—the characteristic polynomial. For some time they (understandably) had no idea 
that the symmetry of the coefficients was relevant; and, in fact, in one such problem 
they considered—the secular (= long-term) pertubations of the parameters deter
mining the planetary orbits—the symmetry property of the coefficients was not 
immediately in evidence. Because of the apparent mathematical difficulty of the 
problem and because they were primarily concerned with the analysis of mechanical 
problems, Lagrange and Laplace introduced various physical arguments, together 
with some questionable mathematical reasoning (by modern standards), to estab
lish reality. 

Eventually, in a somewhat fortuitous manner (which perhaps proves that two 
wrongs make a right) Laplace discovered [4] that the symmetry properties of the 
coefficients in the secular perturbation problem could indeed be used to demon-
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strate the reality of the eigenvalues. (The symmetry property in this case is m^y^A^ 
= mjry2Aji9 where m{ = mass of /th planet and r{ = its mean distance to sun.) 
By modern standards Laplace's reality proof was not valid because what he did was 
to use symmetry together with the differential equations to derive an equality that 
implied the solutions had to be bounded as functions of time. Then from the form 
of the solutions to the differential equations, which, as noted, were not correctly 
formulated for multiple roots, he inferred the reality of the eigenvalues. 

Despite these flaws, Laplace's discovery of the relationship between reality and 
symmetry was a real breakthrough; Lagrange, for example, never realized the 
relationship. It is therefore somewhat ironical to find that it was Lagrange, and not 
Laplace, who had more influence upon Cauchy. When Cauchy wrote his paper in 
1829 he was not mindful of the eigenvalue problems that arise in integrating sys
tems of differential equations. He was writing some lectures that dealt with a favor
ite subject at the École Polytechnique in the early 19th century: the classification of 
quadric surfaces. And in this connection he was interested in the transformation of 
a quadratic form in three variables into a sum of square terms only. This problem 
also arose in the mathematical analysis of the rotational motion of a rigid body as 
studied by Lagrange in the 18th century [5], [6]. 

Cauchy was especially influenced by Lagrange's treatment of the transformation 
of a quadratic form, which was unlike anyone else's in terms of its essentially 
abstract formulation. Most mathematicians, both before and after Lagrange, 
regarded the problem as follows : Given a quadratic form in 3 variables, write down 
the equations for the change to another rectangular system of coordinates. These 
equations involved sines and cosines of 3 angles, and by using some trigonometry 
one could show how to eliminate successively the nonsquare coefficients. The 
proofs involved using the fact that a cubic equation—not the characteristic equa
tion—has a real root. 

Lagrange's approach, on the other hand, was this: Consider an arbitrary linear 
substitution in three variables x9 y9 z which has the property that it leaves x2 -f y2 

+ z2 unchanged. Lagrange showed that the coefficients of such a substitution must 
satisfy the now-familiar orthogonality conditions that characterize an orthogonal 
substitution. His problem was therefore to prove the existence of such an orthogo
nal transformation which takes the given quadratic form into a sum of square 
terms. Furthermore, unlike the other treatments of the problem, Lagrange's made 
the consideration of an eigenvalue problem central. That is, he showed that the 
eigenvalue problem determined by the coefficients of the quadratic form yields, as 
the eigenvectors, the coefficients of the desired orthogonal transformation; and the 
eigenvalues are the coefficients of the square terms in the transformed form. 

Naturally the existence of the orthogonal transformation depended upon the 
reality of the eigenvalues—the roots of the characteristic equation. This problem 
did not seem as overwhelming as the others because it was simply a case of a cubic, 
and Lagrange succeeded in demonstrating that this cubic has the "remarkable" 
property of having all its roots real, no matter what values are assigned to the 
coefficients of the associated quadratic form. What is especially significant about 
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Lagrange's formulation of the principal axis theorem is that it is immediately gene-
ralizable to n variables : It is clear what is meant by a quadratic form in n variables, 
and, thanks to Lagrange, it is clear what an orthogonal transformation in n vari
ables can be taken to mean. 

Lagrange was, of course, exclusively interested in the 3-variable case because that 
was the physically relevant case. Cauchy, however, was in a position—and of a 
frame of mind—to see that not only was Lagrange's formulation of the principal 
axis problem generalizable, so was his proof; it was only necessary to translate 
Lagrange's proof into the language of determinants to see that it was valid for any 
number of variables. In this connection I must point out that in the 18th century 
the notion of a determinant was only vaguely formulated and no significant pro
perties were established. Many mathematicians, including Lagrange, made no use 
of determinants. It was Cauchy who, in 1812, wrote a brilliant memoir [7] which 
essentially created the theory of determinants as we know it. With this background, it 
was only natural that he should look at Lagrange's proof in terms of determinants. 

In this manner Cauchy established the reality of the eigenvalues of a symmetric 
matrix, as a part of his generalization of the principal axis theorem. (It is worth 
noting that Cauchy's 1829 paper thus also represents the beginning of «-dimension
al analytic geometry.) Cauchy's generalization was, moreover, simply that—a 
generalization simply for the sake of an interesting generalization ; he did not see 
the relation of his theorem to the eigenvalue problems stemming from differential 
equations until it was pointed out to him by Charles Sturm, one of Fourier's stu
dents, while he was in the process of writing up his results for publication. 

Historians have attempted to capture the significance of Cauchy's work by 
attributing to him the discovery of the underlying similarity of many of the mechani
cal problems of the 18th century—i.e., that they involved eigenvalue problems with 
symmetric coefficients. If that honor can be said to belong to anyone, it belongs to 
Sturm.1 The actual historical significance of Cauchy's paper is to be found in its 
methodology: the theory of determinants. His contemporaries, led by Jacobi, saw 
in Cauchy's theory of determinants a new and powerful algebraic tool for dealing 
with rc-variable algebra and analysis. It was they, especially Weierstrass, who used 
determinant-theoretic methods to give a purely mathematical treatment of many of 
the other eigenvalue problems of the 18th century, viz. those of the form 

(1) AX = IBX with related differential equations BY = AY, 

where A and B are symmetric and B is definite. 
I cannot go into the work of Weierstrass in any detail, but I would like to point 

out that Weierstrass' treatment of (1) involved, implicitly, the notion of elementary 
divisors. In effect, Weierstrass proved [8] that it is possible to transform simul
taneously (by an orthogonal substitution) B into the identity / and A into diagonal 
form because the elementary divisors are linear. (Recall that an elementary divisor 
(/I—a)k of the characteristic polynomial of a matrix corresponds to a k-by-k Jordan 

1The title of Cauchy's paper [3] has misled historians. Evidence exists which suggests he added 
it at the last minute, after his encounter with Sturm. 
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block with eigenvalue X = a.) These results were then generalized to bilinear forms 
and became Weierstrass' theory of elementary divisors [9]. I should point out that 
Weierstrass introduced the so-called Jordan canonical form in developing his 
theory, and an immediate consequence of it is the theorem that two matrices (or 
bilinear forms) are similar iff they have the same Jordan canonical form. 

The above-mentioned work of Weierstrass spanned the years 1858-1868. A word 
is in order concerning the motivation behind it. We are all familiar with Weier
strass' work in analysis, which was characterized by his concern for rigor and hence 
for the foundations of analysis. Certain generalities seem to have been drawn from 
this, namely that a concern for rigor comes at the end of a mathematical develop
ment, after the "creative ferment" has subsided, that rigor in fact means rigor 
mortis. Weierstrass himself provides a good counterexample to this generality, for 
all his work on the spectral theory of forms was motivated by a concern for rigor, 
a concern that was vital to his accomplishments. 

Weierstrass was dissatisfied with the kind of algebraic proofs that were com
monplace in his time. These proofs proceeded by formal manipulation of the 
symbols involved, and no attention was given to the singular cases that could arise 
when the symbols were given actual values. One operated with symbols that were 
regarded as having "general" values, and hence such proofs were sometimes re
ferred to as treating the "general case", although it would be more appropriate to 
speak of the generic case. Generic reasoning had led Lagrange and Laplace to the 
incorrect conclusion that, in their problems, stability of the solutions to the system 
of linear differential equations required not only reality but the nonexistence of 
multiple roots. (Hence their problem had seemed all the more formidable !) In fact, 
Sturm who was the first to study the eigenvalue problem (1) proved among other 
things the "theorem" that the eigenvalues are not only real but distinct as well. His 
proof was of course generic, and he himself appears to have been uneasy about it; 
for at the end of his paper he confessed that some of his theorems might be subject 
to exceptions if the matrix coefficients are given specific values. Cauchy was much 
more careful to avoid what he called disparagingly "the generalities of algebra," 
but multiple roots also proved problematic for him. As he realized, his proof of the 
existence of an orthogonal substitution which diagonalizes the given quadratic 
form depended upon the nonexistence of multiple roots. He tried to brush away the 
cases not covered by his proof with a vague reference to an infinitesimal argument 
that was anything but satisfactory. 

It was to clear up the muddle surrounding multiple roots by replacing generic 
arguments with truly general ones that Weierstrass was led to create his theory of 
elementary divisors. Here is a good example in which a concern for rigor proved 
productive rather than sterile. Another good example is to be found in the work of 
Frobenius, Weierstrass' student, as I shall shortly indicate. 

So far I have indicated some features of the history of the theory of matrices 
which show that the significance of Cayley's memoir on matrices of 1858 has been 
grossly exaggerated. But I do not intend to imply that Cayley played no role what
soever. Indeed he did, but neither the nature of that role nor the motivation that 
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led Cayley to write his 1858 memoir has been correctly partaged by historians. 
Cayley's role and the motivation for his development of the symbolical algebra of 
matrices are linked with a problem of considerable historical importance for the 
theory of matrices. The problem is this: Given a nonsingular quadratic form in'w 
variables, determine all the linear substitutions of the variables that leave the form 
invariant. For reasons that will be clear momentarily, I shall refer to this as the 
Cayley-Hermite problem. 

The problem originated in a paper that Cayley wrote in 1846—and fortunately 
published in Crelle's Journal. He had read a paper in Liouville's journal by Olinde 
Rodrigues in which the latter showed among many other things that the 9 coef
ficients of a linear transformation of rectilinear axes could be expressed rationally 
in terms of three parameters. This was the period—the early 1840's—when Cayley 
was preoccupied with learning and applying the theory of determinants, and he 
showed that Rodrigues' result could easily be established using determinants and, 
in fact, extended to n variables. Cayley's general result was that if Xrs is a system of 
coefficients such that Xrr = 1 and Xsr = — ̂ r5, then the system of coefficients ars 

defined by 

(2) ars = 2Drs/D - drS9 D = \Xrs\, Drs = dDjdXrs9 

has the Lagrangian orthogonality properties. Thus the coefficients ars of the 
orthogonal substitution are expressible as rational functions of n{n - l)/2 parame
ters—the Xrs. 

Expressed in modern symbolism, Cayley's solution can be written as 

(3) U = 2{I + 5)-i - / = ( / + SYKI - S)9 £/•= {ars)9 I+S= {Xrs). 

The significance of Cayley's solution was that a succinct symbolical representation 
can be given if both the operations of addition and multiplication are employed. 
I already pointed out that in the late 1840's and early 1850's Eisenstein and Her-
mite recognized the possibility of a symbolical algebra of linear substitutions under 
addition and multiplication. But in their work they had—or saw—no occasion to 
make any symbolical use of the addition of substitutions. 

In his 1846 paper Cayley himself introduced no new symbolism. The notation of 
determinants provided a very succinct form for the solution, as (2) indicates. (Cay
ley did not, however, use Kronecker deltas.) The matter would probably have ended 
there were it not for Hermite and his interest in the theory of numbers. In the course 
of pursuing his research on the arithmetical theory of ternary quadratic forms 
Hermite had occasion to pose and solve an algebraic problem: Determine all the 
substitutions of a nonsingular ternary form which leave it invariant [10]. Hermite 
seems to have been aware of Cayley's paper of 1846 which can be interpreted as a 
solution to the problem when the form is x2 -f y2 + z2. Although Hermite gave 
another proof for the more general problem, he used Cayley's idea of generating 
solutions from skew symmetric systems and he also generalized the result to n 
variables. 

Hermite, however, left his solution in a somewhat incomplete form in the sense 
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that he did not explicitly write down the coefficients of the solutions to the problem 
except in the case of 2 variables. He could have written the solution down in suc
cinct explicit form had he thought to employ his symbolical algebra of linear sub
stitutions, but this thought did not occur to him. 

It did occur, however, to Cayley, who responded with a paper in 1855 in which he 
showed that Hermite's solution could be written using the composition of matrices : 

(x,r,z,-..) = 

(4) 

a, 
h, 
8, 

h, 
b, 

f, 

g — 
/ -
c ••• 

a9 h - v9 g +/!,• 
h + v9 b9 f- X9-
g - [x9f ' + X9 c9 • 

fl, h + v9 g - /ir 
h-v9 b, f + X9-
g + faf - *i c, • 

y, 
k 
g, 

K g... 
b, f -
/, c -

\{x9y9z9"-). 

X = A-\A - S){A + S)-iAx. 

In modern notation 

(5) 

There was nothing new about expressing results using the composition of matri
ces; Eisenstein and Hermite had been doing it regularly. Notice also that Cayley, 
like Eisenstein and Hermite, used only composition, not addition, of matrices. 
Cayley's originality consisted in seeing a new application for such symbolism, 
although in 1855, he himself did not develop the symbolism and its application any 
further than (4). As in the case of Eisenstein and Hermite, the symbolism was 
primarily used to express succinctly results obtained by other means. 

The Cayley-Hermite problem was, however, conducive to the fuller development 
of the algebra of matrices, and Cayley undertook this in his 1858 memoir on 
matrices. The importance of the Cayley-Hermite problem in motivating the 1858 
memoir is confirmed by the fact that Cayley actually wrote two companion mem
oirs in 1858; the second dealt with the Cayley-Hermite problem and treated it in 
terms of the more fully developed notation. (Cayley is thus able to express the 
solution in a form similar to (5).) Although the 1858 memoirs remained unknown 
for over 20 years, Cayley's papers of 1846 and 1855 were published in Crelle's 
journal, and through them Cayley did exert some influence. 

Before leaving Cayley, I must point out a characteristic of his mathematics. I 
have already stressed the importance in the history of the theory of matrices of 
distinguishing between form—the symbolical algebra of matrices—and substance. 
This distinction is especially meaningful in connection with Cayley's papers on 
matrices, for they are primarily on the formal level and lacking in much substance. 
The sole theorem contained in the 1858 memoir is that a matrix satisfies its charac-
terstic equation—a theorem immediately suggested by the symbolism. Cayley, 
however, did not prove it. He gave a computational verification for two-by-two 
matrices, assured his readers that he had also verified the computations for 3-by-3 
matrices and added: "I have not thought it necessary to undertake a formal proof 
of the theorem in the general case of a matrix of any degree." This reflects not only 
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Cayley's lack of interest in proofs, where inductive evidence seemed convincing, but 
also his failure to realize that his symbolical algebra of matrices makes it possible 
to give a simple general proof. Cayley never seemed to realize fully the power of the 
symbolical algebra of matrices as a method of reasoning. 

The only other general theorem in Cayley's 1858 memoir is the assertion that 
"the general expression" for the matrices which commute with a given matrix M 
are polynomials in M of degree ^ n— 1. This theorem is, of course, literally false; 
it is true when the minimal polynomial is the same as the characteristic polynomial, 
as Frobenius was to prove. But Cayley failed to introduce such distinctions in his 
extremely vague proof. It was typical of the generic level of reasoning in algebra 
that Weierstrass had just begun to criticize. Incidentally, this very problem of 
determining the linear substitutions that commute with a given one was to motivate 
Camille Jordan, 10 years later, to introduce the Jordan canonical form [11], [12]. 
Cayley, however, failed to do what Jordan did. 

The solutions that Cayley and Hermite had given to the Cayley-Hermite problem 
were also generic; they had not obtained all possible solutions to the problem. 
Generic proofs were the order of the day in the 1850's, and no one raised any 
objections. The Cayley-Hermite problem thus sank into oblivion where it perhaps 
would have remained had it not once again been for the theory of numbers. Just 
as Hermite's interest in the arithmetical theory of ternary forms had reawakened 
Cayley's interest in the Cayley-Hermite problem, so now in the early 1870's it was 
Paul Bachmann's interest in ternary forms that led him to re-examine Hermite's 
solution to the Cayley-Hermite problem and to discover its completeness. 

Bachmann's observations brought forth a reply from Hermite in which he patched 
up his earlier solution to cover the singular cases—but only for the ternary case. 
Also Bachmann's colleague at Breslau, Jacob Rosanes, attempted to deal with the 
«-variable case by making use of the fact, observed by Hermite and Cayley concern
ing their solutions, that if X is a characteristic root so is Iß. Rosanes' results were, 
however, incomplete, especially because he could not handle the case of multiple 
roots. 

Here then was a good "Weierstrassian" problem, a challenge similar to that 
faced earlier by Weierstrass. This time the challenge was taken up by Frobenius, 
who had received his doctorate under Weierstrass in 1870. The result was a 63-page 
paper which was published in Crelle's journal in 1877. Let me explain why it was so 
long. Frobenius saw that to provide a rigorous and elegant solution to the Cayley-
Hermite problem and the related questions raised by Rosanes' paper, it was de
sirable to fuse together the spectral theory he had learned from Weierstrass and 
Kronecker with the symbolical algebra of linear substitutions. To treat the Cayley-
Hermite problem Frobenius in effect composed a masterful and substantial mono
graph on the theory of matrices—or forms as he called his symbols. In its pages he 
convincingly demonstrated the power of the new symbolical method of reasoning 
when used in conjunction with spectral theory. 

Frobenius' paper thus represents an important landmark in the history of the 
theory of matrices, for it brought together for the first time the work on spectral 
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theory of Cauchy, Jacobi, Weierstrass and Kronecker with the symbolical tradition 
of Eisenstein, Hermite and Cayley. I should add that Frobenius' role in the history 
of the theory of matrices goes beyond what I have indicated. He also established the 
importance of matrix theory in important new areas of mathematics, such as 
hypercomplex numbers and group representations. 

Although I have stressed Frobenius' contributions, I trust that my necessarily 
incomplete historical sketch has been sufficient to indicate that the history of 
matrix theory involved the efforts of many mathematicians, that it was indeed an 
international undertaking. 
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