Book Problems:

- Section 3.7, Exercises 2, 12, 18, 22
- Section 4.3, Exercises 2, 6, 8, 20, 24
- Section 4.4., Exercises 6, 8, 10
- Section 4.5, Exercises 2, 4, 8, 10, 14, 20

Additional Problems:

A1. Volume of a Sphere. Consider the sphere of radius r centered at the point $(0,0,0)$. In order to compute the volume we can think of the sphere as made of as infinitely many thin cylinders stacked together. At each x value between $-r$ and r there is a thin cylinder with radius $\sqrt{r^{2}-x^{2}}$ and height $d x$. The volume of this cylinder is $\pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x=\pi\left(r^{2}-x^{2}\right) d x$. To obtain the volume of the sphere we "add up" the volumes of all the cylinders:

$$
\text { volume of a sphere }=\int \text { volume of thin cylinders }=\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x
$$

Evaluate the integral.

