Book Problems:

- Section 2.7, Exercises 4, 6
- Section 2.8, Exercises 12, 14, 22, 24
- Section 3.3., Exercises 2, 4, 28, 30, 34
- Section 3.5, Exercises 2, 4, 8, 16
- Section 3.6, Exercises 8, 14

Additional Problems:

A1. The Babylonian Algorithm for Square Roots. Given a positive number $a>0$ note that $x=\sqrt{a}$ is the unique positive solution of the equation $f(x)=0$ where $f(x)=x^{2}-a$.
(a) Show that Newton's method leads to the following algorithm to compute \sqrt{a} :

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) .
$$

(b) Use this algorithm with $a=3$ to find $\sqrt{3}$ accurate to six decimal places. [Hint: Start with the guess $x_{1}=1$. You can stop when the first six decimal places don't change.]

