Book Problems:

- Section 1.3, Exercise 13
- Section 1.4, Exercises 12, 18, 22, 28, 50, 52, 54, 56
- Section 1.6, Exercises 14, 18, 24, 28, 30

Additional Problems:

A1. The Geometric Series. For any real number r and for any positive integer n we have the following identity:

$$
1-r^{n+1}=(1-r)\left(1+r+r^{2}+\cdots+r^{n}\right)
$$

(a) If $|r|<1$, use this identity to prove that

$$
\lim _{n \rightarrow \infty}\left(1+r+r^{2}+\cdots+r^{n}\right)=\frac{1}{1-r}
$$

[Hint: If $|r|<1$ then we have $\lim _{n \rightarrow \infty} r^{n}=0$.]
(b) Use part (a) to evaluate the infinite sum

$$
1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\cdots
$$

A2. The Exponential Function. Recall that the number e is defined by the limit

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} .
$$

In class we interpreted this as the amount of money you will have after one year if you invest $\$ 1$ in a bank account with 100% yearly rate of return. Using the same reasoning, if you invest $\$ 1$ in a bank account with yearly rate of return $r>0$ (the rate $r=1$ corresponds to 100%), then the amount of money you will have after one year is

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}
$$

Use the substitution method to evaluate this limit. [Hint: Let $n=m r$ and note that $m \rightarrow \infty$ as $n \rightarrow \infty$.]

