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Galloway has been at the heart of Lorentzian splitting
geometry since the subject began.

My aim here will only be to give a flavor of some of our joint
work in this field.
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Hawking-Penrose Singularity Theorem (1970)

‘Spatially closed GR spacetimes are generically singular.’



Hawking-Penrose Singularity Theorem (1970)

Let Mn+1 be a spacetime with:

(1) compact Cauchy surfaces

(2) Ric(X ,X ) ≥ 0, for all timelike X ∈ TM

(3) all causal geodesics satisfy the ‘generic condition’

Then M has an incomplete causal geodesic.

1970, Geroch: posed rough rigidity question in 3 + 1

1980’s, Yau: proposed rigidity in specific case of H-P above

posed Lorentzian splitting problem in 1982

1993: Beem, Harris: the generic condition is generic!
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Bartnik Splitting Conjecture (1988)

Let Mn+1 be a spacetime with:

(1) compact Cauchy surfaces

(2) Ric(X ,X ) ≥ 0, for all timelike X ∈ TM

(3) timelike geodesically complete

Then M splits isometrically as:

(Mn+1, g) ≈ (R× Σn,−dt2 + h)

1984, Galloway: splitting if no observer horizons

1988, Bartnik: splitting if one observer has no horizon

(Bartnik has referred to this as ‘the Galloway Conjecture’.)
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For a warped product (Mn+1, g) = (I × Σn,−dt2 + f 2(t)h),

(1) =⇒ Σ compact

(2) =⇒ f ′′ ≤ 0

(3) =⇒ I = R



Two basic routes to splitting:

• construct a compact maximal spacelike hypersurface Σ

barrier methods

• construct a timelike line α

Busemann function bγ from timelike ray γ

{bγ = 0} = conventional Lorentzian ‘horosphere’

Lorentzian Splitting Theorem



Rough Idea:

want a maximal hypersurface?

try making a big sphere!

Mn+1 ∼ flat (RicT ∼ 0)

H(Sr ) ∼
n

r
(Raychaudhuri/Riccati comp)

H(S∞) ∼ 0
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In joint work with G. Galloway:

• new, geometric approach to Lorentzian horospheres

ray horosphere, S∞(γ), from timelike ray γ {bγ = 0}

Cauchy horosphere, S∞(S), from Cauchy surface S

generalized horospheres S∞, and achronal limits A∞

• convexity and rigidity

maximum principle of Andersson, Galloway, Howard, 1993

new splitting results, proofs



C

S−r (C )

In Minkowski space, let C = {q} and S−r = S−r (C ).

(1) S−r = ∂I−(S−r ) is an acausal C∞ hypersurface

(2) Each x ∈ S−r joined to C by a maximal radial geodesic

(3) H(S−r ) = −n
r
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C

S−r (C )

Let M be globally hyperbolic and C compact, let S−r = S−r (C ).

(1) S−r = ∂I−(S−r ) is an acausal C 0 hypersurface

(2) Each x ∈ S−r joined to C by a maximal radial geodesic

(3) H(S−r ) ≥ −n
r

in support sense, if RicT ≥ 0
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Ray horosphere: γ



Ray horosphere: γ

Look at past spheres S−k := S−k (γ(k))



Ray horosphere: γ

reverse triangle inequality =⇒ I−(S−k ) ⊂ I−(S−k+1)



Ray horosphere: γ

We define the ray horosphere

S−∞(γ) := ∂

(⋃
k

I−(S−k )

)
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S−∞(γ)



Ray horosphere: γ

S−∞(γ)



Ray horosphere: γ

S−∞(γ)



Ray horosphere: γ

S−∞(γ)



Ray horosphere: γ

S−∞(γ)



Ray horosphere: γ

S−∞(γ)

S−∞(γ) has a maximal radial geodesic from each point x

joining x ∈ S−∞(γ) to the “center, γ(∞)”
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Let S be a compact Cauchy surface. Let γ be a future S-ray.

γ

(1) S−∞(γ) = ∂I−(S−∞(γ)) is an acausal C 0 hypersurface

(2) S−∞(γ) has a future timelike S−∞(γ)-ray from each point

(3) H(S−∞(γ)) ≥ 0 in support sense, if RicT ≥ 0
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Cauchy horosphere:

S = a compact C 0 Cauchy surface

S+
k (S) := future sphere of radius k from S

S−k (S+
k (S)) := past sphere of radius k from S+

k (S)



Cauchy horosphere:

S
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Cauchy horosphere:

S

S−∞(S)



Let S be a compact Cauchy surface.

(1) S−∞(S) = ∂I−(S−∞(S)) is an acausal C 0 hypersurface

(2) S−∞(S) has a future timelike S−∞(S)-ray from each point

(3) H(S−∞(S)) ≥ 0 in support sense, if RicT ≥ 0
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S

γ

S−∞(γ) = S−∞(S)



S

γ



S−∞(S) S

S−∞(γ)

γ



Theorem (Andersson, Galloway, Howard, 1998)

Suppose S1 and S2 are C 0 spacelike hypersurfaces, with:

S2 is locally to the future of S1 near p ∈ S1 ∩ S2

S1 has support mean curvature ≥ c

S2 has support mean curvature ≤ c

Then for some neighborhood U of p, S1 ∩ U = S2 ∩ U , and
this intersection is smooth with mean curvature H = c .

In our context:

past horospheres S−∞ have support mean curvature ≥ 0

future horospheres S+
∞ have support mean curvature ≤ 0
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Theorem (Basic Horosphere Rigidity, 2013)

Let M be a spacetime:

(1) globally hyperbolic

(2) Ric(X ,X ) ≥ 0, for all timelike X ∈ TM

(3) timelike geodesically complete

Suppose that S−∞ is a past horosphere which is future
bounded, and admits a past S−∞-ray, (e.g., if S−∞ compact).
Then S−∞ is a smooth spacelike Cauchy surface, and

(M , g) ≈ (R× S−∞,−dt2 + h)



Theorem (Bartnik under ‘max-min’, 2013)

Let M be as in the Bartnik conjecture, with

(1) compact Cauchy surface S

(2) Ric(X ,X ) ≥ 0, for all timelike X ∈ TM

(3) timelike geodesically complete

If S satisfies the ‘max-min’ condition, then the past Cauchy
horosphere S−∞(S) is a smooth spacelike Cauchy surface, and

(M , g) ≈ (R× S−∞(S),−dt2 + h)



Theorem (Generalized Horosphere Rigidity, 2016)

Let M be a spacetime:

(1) globally hyperbolic

(2) Ric(X ,X ) ≥ 0, for all timelike X ∈ TM

(3) timelike geodesically complete

If any two horospheres S−∞ and S+
∞ meet at a ‘spacelike point’

with I−(S−∞) ∩ I+(S+
∞) = ∅, then S−∞ = S+

∞ =: S∞ is a smooth
geodesically complete spacelike hypersurface which splits M :

(M , g) ≈ (R× S∞,−dt2 + h)

Gives new proof of basic Lorentzian Splitting Theorem.



Theorem (Bartnik under ‘horo-to-horo’, 2016)

Let M be as in the Bartnik conjecture, with

(1) compact Cauchy surfaces

(2) Ric(X ,X ) ≥ 0, for all timelike X ∈ TM

(3) timelike geodesically complete

If M has Cauchy surfaces S1 and S2 such that

J−(S−∞(S1)) ∩ J+(S+
∞(S2)) 6= ∅,

Then M splits;

(Mn+1, g) ≈ (R× Σn,−dt2 + h)

Subsumes previous partial results.



Theorem (Bartnik under conformal symmetry+vacuum, 2018)

Let M be a spacetime with

(1) compact Cauchy surfaces

(ii) Ric(X ,X ) ≡ 0

(3) timelike geodesically complete

If M admits a timelike conformal Killing field X , then M splits,

(Mn+1, g) ≈ (R× Σn,−dt2 + h)

and X must be Killing.

1986: Eardley, Isenberg, Marsden, Moncrief

2018: Costa e Silva, Flores, Hererra: relaxed to RicT ≥ 0,
assuming completeness of X , (or other technical condition)
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Theorem (Future Asymptotically dS Rigid Singularity, 2013)

Let M be a spacetime with

(1) compact Cauchy surfaces

(2) Ric(X ,X ) ≥ −n, for all timelike unit X ∈ TM

(3) future timelike geodesically complete

Suppose S is a Cauchy surface such that S+
k (S) has support

mean curvature ≥ ak , with min{n, ak} = n + o(e−2k). If
S−∞(S) admits a past S−∞(S)-ray, then either S−∞(S) admits a
past incomplete S−∞(S)-ray, or S−∞(S) is a smooth, compact
spacelike Cauchy surface with mean curvature H = n, and

(M , g) ≈ (R× S−∞(S),−dt2 + e2th)

2000: Cai, Galloway

2002: Andersson, Galloway
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Thank You!



speaker as a grad student at U Miami


