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What is Spacetime?

In Special Relativity: Spacetime is R4 endowed with the
Minkowski metric g = −dt2 + dx2 + dy2 + dz2.

The points in spacetime are events.

A null vector, v , has g(v , v) = 0.
Light travels along null geodesics γ s.t. g(γ′(s), γ′(s)) = 0 ∀t.
Every event has a light cone of null vectors

oriented with a future and a past.

A timelike vector, v , has g(v , v) < 0.
while a causal vector, v , has g(v , v) ≤ 0.

An event q is in the causal future of p, written q ≥ p,
iff there is a future directed causal curve, c , from p to q:

g(c ′(s), c ′(s)) ≤ 0 ∀s

This is a flat spacetime with no gravity.
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What is Spacetime?

In General Relativity: Spacetime is a manifold M4 endowed with a
Lorentzian metric g of signature − + + +.

The points in spacetime are still called events and every event
has a light cone of null vectors, v with g(v , v) = 0,

continuously oriented with a future and a past.

Example: M4 = (0, π)× S3 with g = −dt2 + sin2(t)gS3 .
There is a big bang and a big crunch in this spacetime.

Again an event q is in the causal future of p, written q ≥ p,
iff there is a future directed causal curve, c , from p to q:

g(c ′(s), c ′(s)) ≤ 0 ∀s

A generalized time function, τ : M → R, is strictly increasing
along all nontrivial future directed causal curves.

Warning: A time function need not exist! Example: M=T4
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Friedmann–Lemâıtre–Robertson–Walker Spacetimes

FLRW spacetimes are used by cosmologists to model the universe.
One assumes that

M4 = (a, b)× N3 and g = −dt2 + f 2(t)gN
where N is a homogeneous Riemannian manifold

of constant curvature, K .
In this simplified setting

Einstein’s Equations of General Relativity
reduce to an ordinary differential equation for f .

When f increases the universe is said to expand.
If f starts at 0 there is a big bang
and if it ends at 0 there is a big crunch.

While these models are very important in cosmology... they are an
oversimplification of the observed universe.
One may ask: How close is the true universe to these models?
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How close it the true universe to these models?

FLRW spacetimes are over simplified:
M4 = (a, b)× N3 and g = −dt2 + f 2(t)gN

because N3 has constant curvature
and matter is assumed to be distributed evenly.

Yet the real universe is known to have stars with gravity wells:

Is a large round universe filled with stars approximately a sphere?

And what about black holes?
Even a universe with a single black hole cannot be considered to
be close to an FLRW space, unless perhaps one cuts out the
interior of the black hole along the horizon.
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Goal: Define a Distance between two Spacetimes

What does it mean to say the universe is “approximately” an
FLRW spacetime when it has gravity wells and black holes?

Concern: How can we measure the “distance” between two
spacetimes which are not even diffeomorphic?

Joint w/ Wenger: defined the intrinsic flat distance: dF (M1,M2),
between Riemannian manifolds which are not diffeomorphic.
Joint w/ Lee: spherically symmetric wells and black holes of small
mass disappear under F convergence.

S-T Yau: develop a spacetime intrinsic flat distance: dSF (M1,M2)
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The Spacetime Intrinsic Flat Distance: dSF(M1,M2)

Joint with Wenger [JDG2011]: The intrinsic flat distance
dF (M1,M2) is defined between a pair of rectifiable metric spaces.
It is defined by taking the infimum over all distance preserving
maps, ϕj : Mj → Z into all complete metric spaces, Z , of the
Federer-Flemming flat distance between the images ϕj(Mj) ⊂ Z .

Discussion with Andersson and Yau: Try to convert spacetimes,
(M, g), canonically into metric spaces, (M, d), then take

dSF ((M1, g1), (M2, g2)) = dF ((M1, d1), (M2, d2)).

Maybe use Andersson-Galloway-Howard cosmological time, τ , to
convert a Lorentzian metric g into a Riemannian metric 2dτ2 + g
Trouble: τ = τAGH is not smooth so dτ2 is not defined!

Joint with Vega [CQG2016]: We introduce the null distance, d̂τ ,
on a spacetime, (M, g), endowed with a time function, τ .
(a time function is strictly increasing along future causal curves)
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The Null Distance between events in a Spacetime: d̂τ(p, q)
Joint with Vega: Given a time function, τ , on a spacetime, (M, g),

d̂τ (p, q) = inf
β
L̂τ (β) = inf

β

k∑
i=1

|τ(β(ti ))− τ(β(ti+1)|

where the inf is over all piecewise causal curves β from p to q,
which are causal from xi = β(ti ) to xi+1 = β(ti+1):



The Null Distance in Minkowski Spacetime
Joint with Vega: Given a time function, τ , on a spacetime, (M, g),

d̂τ (p, q) = inf
β
L̂τ (β) = inf

β

k∑
i=1

|τ(β(ti ))− τ(β(ti+1)|

where the inf is over all piecewise causal curves β from p to q.

Example: Minkowski Spacetime

The metric tensor is
g = −dt2 +dx21 +dx22
So if we take τ = t
then the level sets of
d̂τ (p, ·) are cylinders
aligned perfectly with
the light cones.

With τ = t: p is in the future of q ⇐⇒ d̂τ (p, q) = τ(p)− τ(q).
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When the Null Distance Encodes Causality it is Definite

Joint with Vega: Given a time function, τ , on a spacetime, (M, g),

d̂τ (p, q) = inf
β
L̂τ (β) = inf

β

k∑
i=1

|τ(β(ti ))− τ(β(ti+1)|

where the inf is over all piecewise causal curves β from p to q.

Lemma: p is in the future of q =⇒ d̂τ (p, q) = τ(p)− τ(q).

Definition: We say d̂τ encodes causality when this is ⇐⇒ .

Thm: If d̂τ encodes causality then (M, d̂τ ) is a metric space.

Lemma: d̂τ encodes causality on an FLRW spacetime τ = t.

So we can measure the dSIF between two FLRW spacetimes by
converting them to metric spaces and taking the dF between them.
But what about other spacetimes?
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So we can measure the dSIF between two FLRW spacetimes by
converting them to metric spaces and taking the dF between them.
But what about other spacetimes?
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The Cosmological Time Function
Andersson-Galloway-Howard defined a time function which is
independent of a particular gauge on a given spacetime
(see also Wald-Yip):

Defn: τAGH(p) is the supremum of the Lorentz distance from p
over all points q in its past. That is,

τAGH(p) = sup
q≤p

∫
c

√
−g(c ′(s), c ′(s)) ds

where c is a future causal curve from q to p. It is said to be
“regular” if it is finite on all of M and converges to 0 on all past
inextensible curves.

With Vega: If one defines the null distance using a
regular cosmological time function, τ = τAGH ,
then it is a definite metric: d̂τ (p, q) = 0 ⇐⇒ p = q.

Open: Does it also encode causality? Are the charts biLip?
Work in progress in this direction by B Allen and A Burtscher.



Spacetime Intrinsic Flat Distances

between Big Bang Spacetimes [in progress with Vega]

The classic Friedmann-Lemâıtre-Robertson-Walker spacetimes are
warped product manifolds, with metric tensors g = −dt2 + f 2(t)h.

They have a big bang iff t > 0 and limt→0+ f (t) = 0.

Thm: ∃ a single big bang point, p0, s.t. d̂τ (q, p0) = τ(q)∀q ∈ M.

We can then generalize the definition of big bang spacetimes to
include all spacetimes with such a big bang point.

We then convert all such (M, g) into pointed metric spaces
(M, d̂τ , p0) canonically and uniquely.

We can then describe their spacetime intrinsic flat distance and the
pointed intrinsic flat convergence of such spaces.

Thus we can achieve our goal: to understand what it means for
the universe to be close to an FLRW space.
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Spacetime Intrinsic Flat Distances between

Maximal Developments [in progress with Sakovich]

We consider spacetimes which are maximal developments of initial
data sets solving Einstein’s Equations [Choquet-Bruhat&Geroch].

Example: The Schwarzschild spacetime of mass m > 0 is

gSch,m = −
(
r2 − 2mr

r2

)
dt2+

(
r2

r2 − 2mr

)
dr2+r2gS2 with r > 2m.

Here we have cut out the interior of the black hole along the
horizon at r = 2m. The region t > 0 is the maximal development
of the t = 0 level.

We study the cosmological time, τ = τAGH , and null distance, d̂τ
on the t > 0 regions of Schwarzschild spacetimes (and Kerr
spacetimes). We prove the spacetime intrinsic flat limits of these
regions as m→ 0 is the t > 0 region in Minkowski spacetime.

Next we plan to study far more general maximal developments.
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Call for more study of the cosmological time!

What spaces have a regular cosmological times?

It appears easy to check when it is finite but is trickier to verify
that it converges to 0 along all past inextensible curves.

What can one say about the cosmological time?

Cui-Jin: −τ is a viscosity soln of g(∇u,∇u) = −1

Can one apply this to explicitly find the value of the cosmological
time function on classic spacetimes?

These are questions for Lorentzian Geometers!!!
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Meanwhile there is work on F
Joint with Wenger [JDG2011]: The intrinsic flat distance
dF (M1,M2) is defined between a pair of Riemannian manifolds. It
is defined by taking the infimum over all distance preserving maps,
ϕj : Mj → Z into all complete metric spaces, Z , of the
Federer-Flemming flat distance between the images ϕj(Mj) ⊂ Z .

The flat distance between two submanifolds, T1,T2 ⊂ Z is

dZ
F (T1,T2) ≤ inf{volm( A )+volm+1( B ) : A +∂ B = T1−T2},
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Results on F convergence:

Joint with Lakzian: Methods of estimating dF (M1,M2) by finding
Ui ∈ Mi which are biLip close, and showing vol(Mi \ Ui ) is small,
and area(∂Ui ) and distance differences λ are controlled.

This was applied with Stavrov and will be applied with Sakovich.

Wenger Compactness: If Mi have

vol(Mi ) ≤ V diam(Mi ) ≤ D area(∂Mi ) ≤ A

then a subsequence Mij
F−→ M∞ possibly 0.

This was applied with Huang and Lee combined with:

Sormani Arzela-Ascoli: If Fi : Mi →W where W is compact

have Lip(Fi ) ≤ K and Mi
F−→ M∞

then there exists F∞ : M∞ →W with Lip(F∞) ≤ K .

Recent joint work with Brian Allen: provides controls on the
distances and metric tensors which imply GH and F convergence.
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Thank you for Listening!

A reminder of the open questions for Lorentzian Geometers:

What spaces have a regular cosmological times?

It appears easy to check when it is finite but is trickier to verify
that it converges to 0 along all past inextensible curves.

What can one say about the cosmological time?

Cui-Jin: −τ is a viscosity soln of g(∇u,∇u) = −1

Can one apply this to explicitly find the value of the cosmological
time function on classic spacetimes?

Thanks again! Happy Birthday, Greg!!!
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