Quantum fields

Quantum strong energy inequality and the Hawking singularity theorem

Eleni-Alexandra Kontou

in collaboration with Christopher Fewster and Peter Brown

A Celebration of Mathematical Relativity University of Miami December 16th, 2018

Based on DOI:10.1007/s10714-018-2446-5, arXiv:1809.05047 and a manuscript in preparation

2/19

イロト イロト イヨト イヨト 二日

Introduction

Definition

A spacetime is singular if it possesses at least one incomplete geodesic.

Introduction

Definition

A spacetime is singular if it possesses at least one incomplete geodesic.

Singularity theorems structure (Senovilla 1998)

1. Causality condition

e.g. There is a Cauchy surface $\mathscr{H}\colon$ complete spacelike C^∞ hypersurface that intersects every null and timelike line only once

2. The initial or boundary condition

e.g. There exists a trapped surface: spacelike hypersurface for which two null normals have negative expansion

3. The energy condition

e.g. Null Energy Condition (Penrose) $R_{ab}\ell^{a}\ell^{b} \geq 0$ with ℓ^{a} : null Strong Energy Condition (Hawking) $R_{ab}U^{a}U^{b} \geq 0$ with U^{a} :timelike

 \Rightarrow Then the spacetime is geodesically incomplete.

Quantum fields

Raychaudhuri equation

- Shear scalar
- Curvature

Proof structure:

- Initial condition: Geodesics start focusing
- Energy condition: Focusing continues
- Causality condition: No focal points
- $\Rightarrow {\sf Geodesic\ incompleteness}$

Quantum fields

Raychaudhuri equation

Curvature

Proof structure:

- Initial condition: Geodesics start focusing
- Energy condition: Focusing continues
- Causality condition: No focal points
- $\Rightarrow \text{Geodesic incompleteness}$

Quantum fields

Raychaudhuri equation

Proof structure:

- Initial condition: Geodesics start focusing
- Energy condition: Focusing continues
- Causality condition: No focal points
- $\Rightarrow \text{Geodesic incompleteness}$

Quantum fields

Energy conditions and quantum inequalities

 \Rightarrow Pointwise energy conditions are violated!

Quantum fields

4/19

Energy conditions and quantum inequalities

 \Rightarrow Pointwise energy conditions are violated!

Average Energy Conditions

Average energy conditions bound the weighted energy density along an entire geodesic

$$\int_{\gamma} d au
ho \, f^2(au) \geq -A$$

Energy conditions and quantum inequalities

 \Rightarrow Pointwise energy conditions are violated!

Average Energy Conditions

Average energy conditions bound the weighted energy density along an entire geodesic

$$\int_{\gamma} d\tau \rho \, f^2(\tau) \geq -A$$

Quantum Inequalities

Quantum Inequalities introduce a restriction on the possible magnitude and duration of any negative energy densities or fluxes within a quantum field theory.

Quantum fields

Energy conditions and quantum inequalities

 \Rightarrow Pointwise energy conditions are violated!

Average Energy Conditions

Average energy conditions bound the weighted energy density along an entire geodesic

$$\int_{\gamma} d\tau \rho \, f^2(\tau) \geq -A$$

Quantum Inequalities

Quantum Inequalities introduce a restriction on the possible magnitude and duration of any negative energy densities or fluxes within a quantum field theory.

$$\int d\tau f^2(\tau) \langle : \rho : \rangle_{\omega}(\gamma(\tau)) \geq -A$$

4/19

Introduction

The classical Einstein-Klein-Gordon field

Quantum fields

A singularity theorem with a weakened energy condition

(Fewster, Galloway 2011)

1. Energy condition

$$\int_{-\infty}^{\infty} r(\tau) f(\tau)^2 d\tau \ge -|||f|||^2$$

•
$$r(\tau) = R_{\mu\nu} U^{\mu} U^{\nu}$$

•
$$|||f|||^2 = \sum_{\ell=0}^{-} Q_{\ell} ||f^{(\ell)}||^2$$

A singularity theorem with a weakened energy condition

(Fewster, Galloway 2011)

1. Energy condition

$$\int_{-\infty}^{\infty} r(\tau) f(\tau)^2 d\tau \ge -|||f|||^2$$

•
$$r(\tau) = R_{\mu\nu} U^{\mu} U^{\nu}$$

• $|||f|||^2 = \sum_{\ell=0}^{L} Q_{\ell} ||f^{(\ell)}||^2$

- 2. **The Causality condition**: Let *S* be a smooth spacelike Cauchy surface
- 3. Initial contraction

$$heta(0) \leq -rac{\mathsf{c}}{2} - \int_{- au_0}^0 f^2(au) \mathsf{r}(au) \mathsf{d} au - |||f|||^2$$

A singularity theorem with a weakened energy condition

(Fewster, Galloway 2011)

1. Energy condition

$$\int_{-\infty}^{\infty} r(\tau) f(\tau)^2 d\tau \ge -|||f|||^2$$

•
$$r(\tau) = R_{\mu\nu}U^{\mu}U^{\nu}$$

• $|||f|||^2 = \sum_{\ell=0}^{L} Q_{\ell}||f^{(\ell)}||^2$

- 2. **The Causality condition**: Let *S* be a smooth spacelike Cauchy surface
- 3. Initial contraction

$$heta(0) \leq -rac{\mathsf{c}}{2} - \int_{- au_0}^0 f^2(au) \mathsf{r}(au) \mathsf{d} au - |||f|||^2$$

⇒ If the geodesic is complete, the Raychaudhuri equation has no solution $(\theta \to -\infty)$. So the geodesic is incomplete.

6/19

イロト イロト イヨト イヨト 二日

The non-minimally coupled field

The nonminimally-coupled scalar field obeys the field equation

$$P_{\xi}\phi=0, \qquad P_{\xi}:=\Box_g+m^2+\xi R$$

where ξ is the coupling constant.

6/19

The non-minimally coupled field

The nonminimally-coupled scalar field obeys the field equation

$$P_{\xi}\phi=0, \qquad P_{\xi}:=\Box_g+m^2+\xi R$$

where ξ is the coupling constant. Stress-energy tensor

$$T_{\mu\nu} = (\nabla_{\mu}\phi)(\nabla_{\nu}\phi) + \frac{1}{2}g_{\mu\nu}(m^{2}\phi^{2} - (\nabla\phi)^{2}) + \xi(g_{\mu\nu}\Box_{g} - \nabla_{\mu}\nabla_{\nu} - G_{\mu\nu})\phi^{2}$$

Effective energy density (EED) on a timelike geodesic γ

$$\rho = T_{\mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu} - \frac{1}{n-2}T.$$

Quantum fields

7/19

イロン イボン イヨン イヨン 三日

Average strong energy condition

$$\begin{split} \int_{\gamma} d\tau \rho \, f^2(\tau) &= \int_{\gamma} d\tau \bigg\{ -\frac{1-2\xi}{n-2} m^2 f^2(\tau) + \left(1-2\xi \frac{n-1}{n-2}\right) (\nabla_{\dot{\gamma}} \phi)^2 f^2(\tau) \\ &+ \frac{2\xi}{n-2} h^{\mu\nu} (\nabla_{\mu} \phi) (\nabla_{\nu} \phi) f^2(\tau) + 2\xi [\nabla_{\dot{\gamma}} (f(\tau)) \phi]^2 - 2\xi \phi^2 (f'(\tau))^2 \\ &- \xi R_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu} f^2(\tau) + \frac{2\xi^2}{n-2} R \phi^2 f^2(\tau) \bigg\} \end{split}$$

 $\xi \in [0,\xi_c]$

Quantum fields

Average strong energy condition

$$\int_{\gamma} d\tau \rho f^{2}(\tau) = \int_{\gamma} d\tau \left\{ \begin{array}{c} -\frac{1-2\xi}{n-2}m^{2}f^{2}(\tau) \\ +\left(1-2\xi\frac{n-1}{n-2}\right)(\nabla_{\dot{\gamma}}\phi)^{2}f^{2}(\tau) \\ +\left(1-2\xi\frac{n-1}{n-2}\right)(\nabla_{\dot{\gamma}}\phi)^{2}f^{2}(\tau) \\ +\frac{2\xi}{n-2}h^{\mu\nu}(\nabla_{\mu}\phi)(\nabla_{\nu}\phi)f^{2}(\tau) \\ +2\xi[\nabla_{\dot{\gamma}}(f(\tau))\phi]^{2} \\ -2\xi\phi^{2}(f'(\tau))^{2} \\ -\xi R_{\mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu}f^{2}(\tau) \\ +\frac{2\xi^{2}}{n-2}R\phi^{2}f^{2}(\tau) \\ \xi \in [0,\xi_{c}] \end{array} \right\}$$

・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ う こ の へ や 7/19 The classical Einstein-Klein-Gordon field $_{\odot \odot \odot \odot \odot}$

Quantum fields

Average strong energy condition

$$\int_{\gamma} d\tau \rho f^{2}(\tau) = \int_{\gamma} d\tau \left\{ \begin{array}{c} -\frac{1-2\xi}{n-2}m^{2}f^{2}(\tau) \\ +\left(1-2\xi\frac{n-1}{n-2}\right)(\nabla_{\dot{\gamma}}\phi)^{2}f^{2}(\tau) \\ +\frac{2\xi}{n-2}h^{\mu\nu}(\nabla_{\mu}\phi)(\nabla_{\nu}\phi)f^{2}(\tau) \\ +2\xi[\nabla_{\dot{\gamma}}(f(\tau))\phi]^{2} -2\xi\phi^{2}(f'(\tau))^{2} \\ \hline -\xi R_{\mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu}f^{2}(\tau) \\ +\frac{2\xi^{2}}{n-2}R\phi^{2}f^{2}(\tau) \\ \xi \in [0,\xi_{c}] \end{array} \right\}$$

$$\int_{\gamma} d\tau \,\rho \,f^{2}(\tau) \geq -\int_{\gamma} d\tau \left\{ \frac{1-2\xi}{n-2} m^{2} f^{2}(\tau) + \xi \left(2(f'(\tau))^{2} + R_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu} f^{2}(\tau) - \frac{2\xi^{2}}{n-2} R f^{2}(\tau) \right) \right\} \phi^{2}$$

Quantum fields

8/19

イロト イロト イヨト イヨト 二日

Average strong energy condition

Imposing Einstein's equation

$$8\pi
ho = R_{\mu
u}\dot{\gamma}^{\mu}\dot{\gamma}^{
u}$$
, $\left(\frac{n}{2}-1\right)R = 8\pi T$.

Quantum fields

8/19

イロト イロト イヨト イヨト 二日

Average strong energy condition

Imposing Einstein's equation

$$8\pi\rho = R_{\mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu}$$
, $\left(\frac{n}{2}-1\right)R = 8\pi T$.

$$egin{aligned} &\int_{\gamma} d au \, R_{\mu
u} \dot{\gamma}^{\mu} \dot{\gamma}^{
u} f^2(au) &\geq & -\int_{\gamma} d au igg\{ \left(rac{1-2\xi}{n-2}
ight) rac{m^2 f^2(au)}{1-8\pi\xi\phi^2} \ &+2\xi \left(rac{d}{d au} rac{f(au)}{\sqrt{1-8\pi\xi\phi^2}}
ight)^2 igg\} 8\pi\phi^2 \,. \end{aligned}$$

Quantum fields

Average strong energy condition

Imposing Einstein's equation

$$8\pi\rho = R_{\mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu}, \qquad \left(\frac{n}{2}-1\right)R = 8\pi T.$$

$$egin{aligned} &\int_{\gamma} d au \, R_{\mu
u} \dot{\gamma}^{\mu} \dot{\gamma}^{
u} f^2(au) &\geq & -\int_{\gamma} d au igg\{ \left(rac{1-2\xi}{n-2}
ight) rac{m^2 f^2(au)}{1-8\pi\xi\phi^2} \ &+2\xi \left(rac{d}{d au} rac{f(au)}{\sqrt{1-8\pi\xi\phi^2}}
ight)^2 igg\} 8\pi\phi^2 \,. \end{aligned}$$

If ϕ obeys global bounds $|\phi| \leq \phi_{\max}$ and $|\nabla_{\dot{\gamma}} \phi| \leq \phi_{\max}'$

$$\int R_{\mu
u} \dot{\gamma}^{\mu} \dot{\gamma}^{
u} f(au)^2 \, d au \geq -Q(\|f'\|^2 + \tilde{Q}^2 \|f\|^2),$$

with Q, \tilde{Q} depend on m, ξ , ϕ_{\max} and ϕ'_{\max} .

8/19

9/19

The singularity theorem

1. The energy condition

$$\int \mathcal{R}_{\mu
u}\dot{\gamma}^{\mu}\dot{\gamma}^{
u}f(au)^2\,d au\geq -Q(\|f'\|^2+ ilde{Q}^2\|f\|^2),$$

2. **The causality condition** Let *S* be a smooth spacelike Cauchy surface

The singularity theorem

1. The energy condition

$$\int R_{\mu
u}\dot{\gamma}^\mu\dot{\gamma}^
u f(au)^2\,d au\geq -Q(\|f'\|^2+ ilde{Q}^2\|f\|^2)$$

- 2. **The causality condition** Let *S* be a smooth spacelike Cauchy surface
- 3. Initial contraction

(i) There is K > 0 so that

$$\dot{ heta}|_{\gamma(au)}+rac{ heta(\gamma(au))^2}{n-1}\geq -Q(extsf{K}^2+ ilde{Q}^2) \qquad ext{on } (- au_0,0]$$

holds along every future-directed unit-speed geodesic $\gamma(\tau)$ issuing orthogonally from S at $\tau = 0$, and (ii) the expansion θ on S obeys

$$heta|_{\mathcal{S}} < - ilde{Q}\sqrt{\mathcal{Q}(n-1)+\mathcal{Q}^2/2} - rac{1}{2}\mathcal{Q}\mathcal{K} \coth\left(\mathcal{K} au_0
ight).$$

9/19

The singularity theorem

1. The energy condition

$$\int \mathcal{R}_{\mu
u}\dot{\gamma}^{\mu}\dot{\gamma}^{
u}f(au)^2\,d au\geq -Q(\|f'\|^2+ ilde{Q}^2\|f\|^2)$$

- 2. **The causality condition** Let *S* be a smooth spacelike Cauchy surface
- 3. Initial contraction

(i) There is K > 0 so that

$$\dot{ heta}|_{\gamma(au)}+rac{ heta(\gamma(au))^2}{n-1}\geq -Q(extsf{K}^2+ ilde{Q}^2) \qquad ext{on } (- au_0,0]$$

holds along every future-directed unit-speed geodesic $\gamma(\tau)$ issuing orthogonally from S at $\tau = 0$, and (ii) the expansion θ on S obeys

$$heta|_{\mathcal{S}} < - ilde{Q}\sqrt{Q(n-1)+Q^2/2} - rac{1}{2}QK \coth\left(K au_0
ight).$$

 Introduction 0000 The classical Einstein-Klein-Gordon field

Quantum fields

The singularity theorem

How much initial contraction is needed?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

10/19

The singularity theorem

How much initial contraction is needed?

- Quantized scalar field in Minkowski spacetime of dimension 4, in a thermal state of temperature $T < T_m$, $T_m = mc^2/k$
- $\ \ \, \bullet \ \ \, \phi_{\max}^2 \sim \langle : \phi^2 : \rangle_T$

The singularity theorem

How much initial contraction is needed?

• Quantized scalar field in Minkowski spacetime of dimension 4, in a thermal state of temperature $T < T_m$, $T_m = mc^2/k$

$$\bullet \ \phi^2_{\rm max} \sim \langle : \phi^2 : \rangle_T$$

Pion: $m = 140 \text{MeV}/c^2$, $\theta_0 \sim 10^{-19} s^{-1}$ and temperature up to $T = 10^{10} \text{K}$ **Higgs**: $m = 125 \text{GeV}/c^2$, $\theta_0 \sim 10^{-14} \text{s}^{-1}$ and temperature up to $T = 10^{13} \text{K}$

The singularity theorem

How much initial contraction is needed?

• Quantized scalar field in Minkowski spacetime of dimension 4, in a thermal state of temperature $T < T_m$, $T_m = mc^2/k$

Pion: $m = 140 \text{MeV}/c^2$, $\theta_0 \sim 10^{-19} s^{-1}$ and temperature up to $T = 10^{10} \text{K}$ **Higgs**: $m = 125 \text{GeV}/c^2$, $\theta_0 \sim 10^{-14} \text{s}^{-1}$ and temperature up to $T = 10^{13} \text{K}$

 \Rightarrow When the field mass is taken equal to an elementary particle we need very little initial contraction for either geodesic incompleteness or that, the solution evolves to a temperature approaching that of the early universe.

Quantization

 Introduction of a unital *-algebra A(M) on our manifold M, generated by the objects Φ(f)

Quantization

- Introduction of a unital *-algebra A(M) on our manifold M, generated by the objects Φ(f)
- We only consider Hadamard states on our algebra, the two-point function $W(x, y) = \langle \Phi(x)\Phi(y) \rangle_{\omega} : \mathscr{D}(M) \times \mathscr{D}(M) \to \mathbb{C}$ has a prescribed singularity structure so that the difference between two states is smooth.

Quantization

- Introduction of a unital *-algebra A(M) on our manifold M, generated by the objects Φ(f)
- We only consider Hadamard states on our algebra, the two-point function $W(x, y) = \langle \Phi(x)\Phi(y) \rangle_{\omega} : \mathscr{D}(M) \times \mathscr{D}(M) \to \mathbb{C}$ has a prescribed singularity structure so that the difference between two states is smooth.
- The smeared local Wick polynomials of the form

$$\langle : \nabla^{(r)} \Phi \nabla^{(s)} \Phi :_{\omega}(f) \rangle_{\omega'} = T^{r,s}[f](W' - W),$$

are part of an extended algebra

Quantization

We need a prescription for finding algebra elements that qualify as local and covariant Wick powers. Hollands and Wald (2014) set out a list of axioms that we follow

Quantization

- We need a prescription for finding algebra elements that qualify as local and covariant Wick powers. Hollands and Wald (2014) set out a list of axioms that we follow
- While the quadratic normal ordered expressions obey Leibniz' rule, but not generally the field equation, the differences in their expectation values obey both

$$\langle (\nabla^{(r)} \Phi P_{\xi} \Phi)(f) \rangle_{\omega'} - \langle (\nabla^{(r)} \Phi P_{\xi} \Phi)(f) \rangle_{\omega} = 0.$$

Expectation value of the quantized EED

$$\langle : \rho_U :_{\omega}(f) \rangle_{\omega'} = \langle \rho_U(f) \rangle_{\omega'} - \langle \rho_U(f) \rangle_{\omega}$$

Quantum strong energy inequality (QSEI)

Theorem

For non-minimally coupled scalar field with coupling constant $\xi \in [0, \xi_c]$, γ a timelike geodesic, for all Hadamard states ω , the normal-ordered effective energy density obeys the SQEI

$$\int d au f^2(au) \langle :
ho_U:
angle_\omega(\gamma(au)) \geq - \left[\mathfrak{Q}_{\mathcal{A}}(f)\mathbb{1} + \langle :\Phi^2:\circ\gamma
angle_\omega(\mathfrak{Q}_{\mathcal{B}}(f)+\mathfrak{Q}_{\mathcal{C}}(f))
ight]\,,$$

where

$$\mathfrak{Q}_A(f) = \int_0^\infty rac{dlpha}{\pi} \left(\phi^*(\hat{
ho}_1 W_0)(ar{f_lpha}, f_lpha) + 2\xi lpha^2 \phi^* W_0(ar{f_lpha}, f_lpha)
ight) \,,$$
 $\mathfrak{Q}_B[f](au) = rac{1-2\xi}{n-2} m^2 f^2(au) + 2\xi (f'(au))^2 \,,$

and

$$\mathfrak{Q}_{C}[f](\tau)=f^{2}(\tau)\xi\left(R_{\mu\nu}U^{\mu}U^{\nu}-\frac{2\xi}{n-2}R\right)(\tau).$$

Quantum strong energy inequality (QSEI)

Theorem

For non-minimally coupled scalar field with coupling constant $\xi \in [0, \xi_c]$, γ a timelike geodesic, for all Hadamard states ω , the normal-ordered effective energy density obeys the SQEI

$$\int d\tau f^2(\tau) \langle :\rho_U : \rangle_\omega(\gamma(\tau)) \geq - \left[\mathfrak{Q}_A(f) \mathbb{1} + \langle : \Phi^2 : \circ \gamma \rangle_\omega(\mathfrak{Q}_B(f) + \mathfrak{Q}_C(f)) \right] \,,$$

- $\mathfrak{Q}_A(f)$: State independent terms
- $|\mathfrak{Q}_B(f)|$: State dependent terms
- $\mathfrak{Q}_{\mathcal{C}}(f)$: State dependent curvature terms

Introduction 0000 The classical Einstein-Klein-Gordon field

Quantum fields

Singularity theorem hypothesis from QSEI

If we constrain the state ω and the metric $g_{\mu\nu}$ to those that satisfy the semiclassical Einstein equation we can convert the QEI to a curvature condition

$$\langle : T_{\mu\nu} : \rangle_{\omega} = 8\pi G_{\mu\nu} .$$

Introduction 0000 The classical Einstein-Klein-Gordon field

Quantum fields

Singularity theorem hypothesis from QSEI

If we constrain the state ω and the metric $g_{\mu\nu}$ to those that satisfy the semiclassical Einstein equation we can convert the QEI to a curvature condition

$$\langle : T_{\mu\nu} : \rangle_{\omega} = 8\pi G_{\mu\nu} .$$

Problems

- 1. The semiclassical Einstein equation requires that the stress-energy tensor is Hadamard renormalized
- 2. In curved spacetimes there is no preferred state

For minimally coupled fields in Minkowski

$$\int d\tau f^{2}(\tau) R_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu} \geq -8\pi \left[\int_{0}^{\infty} \frac{d\alpha}{\pi} \phi^{*}((\nabla_{U} \otimes \nabla_{U}) W_{0})(\bar{f}_{\alpha}, f_{\alpha}) + \frac{\mu^{2}}{n-2} \langle :\Phi^{2}: \circ \gamma \rangle_{\omega}(f^{2}) \right].$$

- Even number of dimensions
- Restrict to a class of Hadamard states ω for which the field's magnitude has a finite maximum magnitude

$$\left| (: \Phi^2 : \gamma)_\omega \right| \le \phi_*^2.$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

15/19

Singularity theorem hypothesis from QSEI

- Even number of dimensions
- Restrict to a class of Hadamard states ω for which the field's magnitude has a finite maximum magnitude

$$\left| (: \Phi^2 : \gamma)_\omega \right| \le \phi_*^2.$$

$$\int d\tau f^2(\tau) R_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu} \geq -\frac{8\pi S_{2m-2}}{2m(2\pi)^{2m}} ||f^{(m)}||^2 - \frac{8\pi \mu^2 \phi_*^2}{2m-2} ||f||^2 \,.$$

- The result applies in curved spacetimes only if the support of the sampling function is constrained to be small compared to local curvature length scales.
- To discuss averages over long timescales we will use a partition of unity. We define bump functions ϕ_n each supported only on an interval $2\tau_0$.
- We obtain a sum of integrals, each of which can be bounded using the Minkowski result

$$\int_{-\infty}^{\infty} R_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu} f^{2}(\tau) d\tau \geq -\frac{8\pi S_{2m-2}}{2m(2\pi)^{2m}} \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} \left[(f\phi_{n})^{(m)} \right]^{2} d\tau - \frac{8\pi \mu^{2} \phi_{*}^{2}}{2m-2} \|f\|^{2}$$

$$\int_{-\infty}^{\infty} R_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu} f^{2}(\tau) d\tau \geq -Q_{m}(\|f^{(m)}\|^{2} + \tilde{Q}_{m}^{2}\|f\|^{2}) := |||f|||^{2},$$

where Q_m and \tilde{Q}_m constants that depend on: m, μ , ϕ_* and the maximum value of the bump function and its derivatives.

$$\int_{-\infty}^{\infty} R_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu} f^{2}(\tau) d\tau \geq -Q_{m}(\|f^{(m)}\|^{2} + \tilde{Q}_{m}^{2}\|f\|^{2}) := |||f|||^{2},$$

where Q_m and \tilde{Q}_m constants that depend on: m, μ , ϕ_* and the maximum value of the bump function and its derivatives. This is an expression of the form

$$\int_{-\infty}^{\infty} r(\tau) f(\tau)^2 d\tau \ge -|||f|||^2$$

so we can prove a singularity theorem with this condition.

1. The energy condition

$$\int_{-\infty}^{\infty} R_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu} f^2(\tau) d\tau \geq -Q_m(\|f^{(m)}\|^2 + \tilde{Q}_m^2 \|f\|^2) := |||f|||^2$$

2. The causality condition

Let S be a smooth spacelike Cauchy surface for (M, g)

3. Initial contraction

(i) There is K > 0 so that

$$\dot{ heta}|_{\gamma(au)}+rac{ heta(\gamma(au))^2}{n-1}\geq -Q_m(extsf{K}^2+ ilde{Q}_m^2) \qquad ext{on } (- au_0,0]$$

holds along every future-directed unit-speed geodesic $\gamma(\tau)$ issuing orthogonally from S at $\tau = 0$, and (ii) the expansion θ on S obeys

$$\theta|_{\mathcal{S}} < -L(Q_m, \tilde{Q}_m) - M(Q_m, \tilde{Q}_m, K, \tau_0).$$

 \Rightarrow Then (M,g) is future timelike geodesically incomplete,

 Classical singularity theorems have easily violated energy conditions in their hypotheses

- Classical singularity theorems have easily violated energy conditions in their hypotheses
- Derived a Hawking-type singularity theorem with an energy condition obeyed by the classical non-minimally coupled Einstein-Klein-Gordon field

- Classical singularity theorems have easily violated energy conditions in their hypotheses
- Derived a Hawking-type singularity theorem with an energy condition obeyed by the classical non-minimally coupled Einstein-Klein-Gordon field
- Developed a strong quantum energy inequality for the non-minimally coupled scalar field

- Classical singularity theorems have easily violated energy conditions in their hypotheses
- Derived a Hawking-type singularity theorem with an energy condition obeyed by the classical non-minimally coupled Einstein-Klein-Gordon field
- Developed a strong quantum energy inequality for the non-minimally coupled scalar field
- Proved a singularity theorem with an energy condition derived by a QEI obeyed by the minimally coupled quantum scalar field that obeys the semiclassical Einstein equation
- Work in progress: prove an absolute (Hadamard renormalised) QSEI for spacetimes with curvature
- Future work: Penrose-type theorem