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N
Black hole topology |

Hawking's theorem:

o Hawking 1972: 4-dimensions, dominant energy —> S? apparent
horizon.

o Gibbons, EW 1999: Area of horizon \ 0 as energy condition violation
0.

o Galloway-Schoen 2006: Higher dimensions = positive Yamabe
type except in special case; stability argument for apparent horizons.

o Galloway 2008: Removed the special case.
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-
Black hole topology Il

Topological Censorship:

@ Gannon 1975: Topology on a Cauchy surface = singularity in
future.

Friedman-Schleich-Witt 1993: “Horizons censor the topology”.

Chrusciel-Wald 1994: Application to Black holes.
Galloway 1995: DOC simply connected.

Galloway-Schleich-Witt-EW 1999: Topcen in AdS, genus formula.

o Eichmair-Galloway-Pollack 2013: Initial data formulation: Outside all
MOTSs, topology is simple.
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-
Black hole topology IlI

Extreme (degenerate) vacuum horizons:

Theorem(Khuri-EW-Wylie): Let H be a (cross-section of a) degenerate
horizon of a D-dimensional stationary vacuum black hole spacetime with
cosmological constant A > 0.

o AN>0 = m(H) < 0.

o A =0 = m1(H) contains a finite-index Abelian subgroup ~ Z*
with k < D — 4; indeed, b;(H) < D — 4.

In short, in any dimension, the Universal Covering Space will be either

@ a compact manifold if A > 0, or medskip

@ a product of a compact manifold with EX if A = 0.
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|
Near Horizon Geometries (NHG)

Extreme (cold, degenerate) black holes:
o Killing horizon H with KVF & = %.
@ Zero surface gravity: Vg&!H =k, k=0.
@ Normal coordinates: H := {r =0}, 0 < C < F(r,x):

ds? = 2dv (dr - %rzF(r,x)dv - rXa(r,x)dxa) + gab(r, x)dx?dxP
@ Then replace v — v/e, r—er, e \0O:

1 1
Ric(g) + §£Xg - EX ® X = Ag + matter > Ag

and 1 1
F= E‘Xlé — 5 divg X+ A+ matter
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|
Near Horizon Geometries (NHG)

Extreme (cold, degenerate) black holes:
o Killing horizon H with KVF & = %.
@ Zero surface gravity: ng{H =ré k=0.
e Normal coordinates: H := {r =0}, 0 < C < F(r,x):

ds? = 2dv (dr - %rzF(r,x)dv - rXa(r,x)dxa) + gab(r, x)dx?dxP
@ Then replace v v/e, r—er, e \ 0:

1 1
Ric(g) + §£Xg — §X ® X = Ag + matter > Ag

and 1 1
F= E\X\é - EdingJr/\+ matter
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Bakry—Emery—Ricci tensor

, . 1 1
RIC)Aé(g) = RIC(g) + §£Xg - mX@X s ( )
1

400 : 1
Rick>(g) := Ric(g) + §£xg .

Notation:

@ n = dimension of manifold
e N = synthetic dimension. (Some use this term for m = N — n).
e Positive: N € (n, c0)

o Negative: N € [—o0,1]: Identify N = 0o and N = —oo cases.
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|
Synthetic dimension: Kaluza-Klein/Warped products

o Warped product NN = M" x___r/n-n) F

gn = gu dele HIN=rgy

@ Then

Ric(gy) = [Ric(gM) + Hessg,, f df ® df]

NOED
82
(N = n)

® [Ric(g;) + e 2/ IN=Ngr (Ag, f — |df|§)] .

o Justifies the term synthetic dimension in gradient X = df case.
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|
Synthetic dimension: Kaluza-Klein/Warped products

o Warped product NN = M"x__ 1y o F
gn = gmaete XN gy
@ Then
, . 1
Ric(gy) = [Rm(gM) + Hessg, f — N )df ® df]

62

® {Ric(g;) + (N=n)

e—zf/(an)g}_ (Ang . ’df§r>] _

o Justifies the term synthetic dimension in gradient X = df case.
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-
Bakry—émery tensor in physics

o Scalar-tensor theory: X = df, N arbitrary (including N < 0).

Static Einstein: X =df, N=n+1.

Optical metric for static Einstein: X = df, N = 1.

Kaluza-Klein dilaton: X = df, N = n+ k.

Near-horizon geometries: N = n+ 2 (arbitrary X).

Yang-Mills energy gap: X = df, N = oco. (Lichnérowicz,
Moncrief-Marini-Maitra arxiv:1809.06318)
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Riemannian Bakry—Emery: Degenerate horizon topology
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-
Structure Theorem (Khuri-EW-Wylie)

Suppose (M, g) is a compact (complete) Riemannian manifold with
Ric¥ (M) > 0 for some N € [n+1,00). Then

@ the universal cover splits isometrically as a product NV x RP where
is compact (complete),

e Ric¥(NV) >0, and

@ X is tangent to V.
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N
Main estimate for the proof
@ As in Cheeger-Gromoll, the Laplacian of the distance function p from

some point, computed at another point lying along a minimal
geodesic v joining the two points, obeys

P
(n—1) 2 _. . .
Apﬁ/[ — — Ric(%,4)| dt .
7~ Rieid)
o Apply Ric)’\é > 0, complete a square, get

Ap <

+Vxp .
o Defining Axp := Ap — Vxp, then
N—-1
AXpST—>Oasp—>oo.

o Differences from Cheeger-Gromoll: n+— N, Ap — Axp.
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Main estimate continued

@ Apply to Busemann (support) functions

b'(q) := Jim [t — dist(g,7(¢))]

° AxbiZOasp—M)o.

o A triangle inequality argument implies then that Axb* = 0.
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N
Sketch the proof

One also obtains (by direct manipulation)
2
Ax (|Vul?) = 2| Hess u*+2Vv, (Axu)+2 Rick(Vu, Vu)+; [X(u)]? .

Now apply these results to Busemann functions u = b* defined by
line ~.

Putting everything together, get
0= Ax (|[Vb*[?) > 2| Hess b*|? > 0.

Hence b* are linear: their level sets define the splitting.

Repeat until there are no more lines to split off.
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Lorentzian Ba kry—Emery
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Lorentzian examples

@ Singularity theorems: Often treated as “uniquely natural” predictions
of general relativity.

@ But are they just as natural in less geometrical settings; e.g.,
scalar-tensor gravitation?

@ JS Case (2010): Hawking-Penrose-type theorem with X = df.

o GJ Galloway and EW: Cosmological singularity and splitting theorems
with N = 0o, X = df

e EW and Will Wylie (2015, 2018): general N, splitting theorems, still
with X = df.

Eric Woolgar (University of Alberta) Bakry—Emery curvature-dimension conditions December 2018 17 / 30



Causal curvature-dimension conditions

o Fix some N € RU{oo}, A € R.
o The timelike curvature-dimension condition TCD(A, N) is

Ricl(X,X) > eR

for every unit timelike vector X.
e The null curvature-dimension condition NCD(N) is

Rich(X,X)>0eR

for every null vector X.

@ These reduce to Ric(X, X) > 0 if f is constant.
@ In general relativity:
e Ric(X, X) > 0 follows from the strong energy condition.
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N
Typical conditions on f when N =occ or N <1

These conditions are only needed when N =00 or N <1 (or N <2 for
certain Lorentzian theorems).

(a) The “classic” condition: f < k.

(b) Wylie's f-completeness condition: fooo e~ 2f(0/(n-1) gt = 0 along
(certain) complete geodesics.?

(c) Sometimes need a stronger condition: Vf future-timelike to the
future of a Cauchy surface S.

Lf(t) is short-hand for f o y(t) where v is a geodesic.
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E.g.: Hawking-type cosmological singularity theorem

(GJ Galloway and EW for N = +00; W Wylie and EW for general N).
Assume that

e TCD(0, N) holds for some fixed N € [—o0, 1] U (n, o0],
@ S is a compact Cauchy surface, v its future unit normal,

o the (future) f-mean curvature of S obeys Hf := H — V,f <0
everywhere on S, and

e if N € [—o0, 1] then fooo e~ 2f(s)/(n=1) s diverges along every
complete timelike geodesic orthogonal to S.

Then no timelike geodesic is future-complete.
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N
TCD Condition

@ Recall TCD(0, N) = Ric(X, X) + Hess(X, X)f — )(df X)2 > 0.

(N
e When N > n, the (df, X)? term helps: no control of f required.

e When N < 1, the (df, X)2 term hinders: but can still obtain a
theorem if we have mild control of f.

o No results for N € (1, n].
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-
Related splitting theorem

Assume that
e TCD(0, N) holds for some fixed N € [—o0, 1] U (n, o0],
@ S is a compact Cauchy surface, v its future unit normal,

@ the (future) f-mean curvature of S obeys Hr == H —V,f <0
everywhere,

o if N € [~00,1] then [;° e~2f()/("~1)ds diverges along every
complete timelike geodesic orthogonal to S, and
@ the geodesics orthogonal to S are future-complete.
Then,

e if N € (—00,1)U(n, ], the future of S is isometric to —dt? & h and
f is independent of t (answers question of JS Case).

o if N =1, the future of S is isometric to —dt? & e2¥()/("=1) b and
f=(t)+o(y), y €5S.
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|
The (timelike) f-Raychaudhuri equation

oH H?
Z  — _Ri / /_K2:_R- VAN 2
5 = R0/ 7) ~ KPP = —Rie(y'. /) ~ o =
Use Hf := H — f’" and use definition of Ric,'cv. Get
aHf . N / / 2 H2 f/2
T _ _R — — _
ot Icf(777) |U| (n—l) (N—n)
. 1 (N —1)
— _R Ne t 1y 2 H2 oH f/ f/2
Icf(777) |U| (n—l) f+ f +(N—n)

Analyse this. Use that Hy diverges along v at finite t iff H diverges.
o First line: If N > n each term on right is < 0 (assuming TCD(0, N)).

@ Second line: Coefficient of "2 has same sign for N < 1 as for N > n,
but must deal with Hef’ term.
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|
Focusing argument: TCD(0, N) case

@ For N > n, an easy identity yields

OHy s N( 1 2 H?
7T« _R _ _
ot — Icf(’Yu’Y) |U| (N—l)
= % < —x?, x:= H¢/(N —1) , using TCD(0, N) .
@ Otherwise, use an integrating factor to eliminate Hef’ term:

9 (s 2 [ (N —1)f?
— - H = — (1 [R Nt 2 H2
at(e f) e [ < (A o HE A T )

Ox __2f 2 _af .
= 5 < —e Dx“, x:=e@-DHr , using TCD(O, N) .

x(t) € —3 N>n

N < . t-l—l/Xo’
@ Now x(0) < xp <0 N € [—00,1]

1
X(t) < fot e—2f(s)/(n=1)ds+1/xq’
@ Thus x(t) - —occ as t " tp.
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Completion of the argument.

@ x — —oo as t — ty for some tp < T(x) < T.
@ Thus H— —oo as t — tp for some tp < T(xg) < T.

@ Thus no future-timelike geodesic orthogonal to S can maximize
beyond t = T.

o If there were a future-complete timelike geodesic -, there would be a
sequence of maximizing geodesics from S to 7y, meeting S
orthogonally and of unbounded length.

@ Thus there can be no future-complete timelike geodesic. QED.
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N
Splitting argument

@ Now Hf <0, and we assume future completeness.

o If HF <0 on S, cannot be future complete, so Hf = 0 at least
somewhere on S.

o If Hy is not identically zero on S, do short f-mean curvature flow.

oX
E = —HfV .

@ Strong maximum principle implies that Hf(s) < 0 for s > 0 (and still
Cauchy).

@ Therefore must have Hr =0 on S.

@ And must have H¢(t) = 0, so each term on right in Raychaudhuri
equation must vanish.
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Splitting argument: continued

For N > n, recall

H2 f/2
(n-1) (N—n)

OHs
ot

— —Ric}(,7) = [o? -

Must have Hr =0 on (0, t).

Thus o =0, H=0, f"=00n (0, t).

o g =—dt>?® h, f' =0, and since the v are future-complete, the
splitting is global.
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Splitting argument: continued

e For N € [—00,1], had

0 [ 2f 2f .
— <e("—1) Hf) = —el-1) |:R|C{‘V(f)/7fy,) =+ |0"2

ot
(N—1)f" ]

TH )

@ Must have Hf =0 on (0, t).

@ Thus 0 =0, H= ', and either f' =0 or N =1, on (0, t).

o If N#1, get H=0 and get global product splitting as before.
o If N =1, use also that Ric}(y',+') = 0 on (0, t).

@ A computation then yields the warped product of the theorem.
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A Myers theorem version of Hawking's theorem

o Let

o (M, g) admit a compact Cauchy surface S, and

o Ric(t,t) > k > 0 for every timelike vector t°.

@ Then vol(M) < 27 vol(S).

Makes contact with approaches to Ricci curvature lower bounds in
metric-measure context, where Myers's theorem becomes a statement
about the support of a measure.
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|
Ricci curvature lower bounds (McCann 1808.01536)

Lorentzian version of Lott-Villani, Sturm, etc.

Measures on spacetime: dvolg, dm := e_fdvolg, dus, with p .= %.

Entropy e(s) := Ef(us) := fMplog pdm.

Choose [0,1] 3 s — us to be a “displacement interpolant” curve for
an optimal transport with cost £¢(f0, jt1) = sup ((Z(x,y))qdw)l/q,
where 7 is a “coupling” of ug to u1, the supremum is over all
couplings 7, and ¢(x, y) is Lorentzian distance between points,
defined to be —oo if the points are not timelike-related.

@ Main result: For smooth Riemannian manifolds

> % (e’(s))2 + K (Cq(po, p11))>

TCD(0, N) < €"(s)
along a displacement interpolant.

Aim: to generalize energy conditions to weak setting.
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