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Taub-NUT Spacetimes

* Misner: Taub-NUT Spacetimes as the counter-example to
almost everything

* Globally hyperbolic region extends across Cauchy horizon
 Cauchy horizon indicates breakdown of determinism

* Taub-NUT Cauchy horizons are compact




Diagram of Taub-NUT Space-Time
o




Strong Cosmic Censorship Conjecture

* Generic solutions of Einstein's equations do not contain
Cauchy horizons

* There are an infinite number of space-times which do have
Cauchy horizons

* ! Do Cauchy horizons occur in generic solutions of Einstein’s
equations?

&Do Cauchy horizons occur in generic solutions of
Einstein's equations?

* This is the focus of my talk here



THEOREM (Isenberg and Moncrief)

* Space-time solutions of Einstein's Equation with compact Cauchy

horizons with non-degenerate generators must contain a Killing vector
field

e Previous results required generators of the horizon to be closed.

» Our new results allow the generators to be non-closed (but not
ergodic).

* Also, If the generators are not closed, there must be a two-
dimensional isometry group: I.e. two independent Killing vector fields



Key Ingredients of the Proof

* |) Topology of the Compact Cauchy Horizon and its Non-
Closed Generators

» 2) Adapted Geodesic Null Coordinates
* 3) Analyticity
* 4) Einstein Equations

* 5) Poincaré Recurrence




Key Ingredients of the Proof (continued)

* 6) Invariance of Geometry of Discs Transverse to Generators
* /) "Ribbon Arguments’ using Stokes' Theorem

* 8) Kolmogorov—Kontsevich Theorem on Transverse Foliation of
a 2-Torus

* 9) Grauert Tubes and the Banach Space of Complex Analytic
Functions

* |0) Cauchy-Kowaleski Theorem




Basic Steps of the Proof

* |) Topology of the Cauchy Horizon and its Non-Closed Generators




Basic Steps of the Proof (continued)

* 2) Choose Adapted Geodesic Null Coordinates for Null Surface N
Corresponding to Zero Level Set of Analytic Function t and Null Vector
Fleld K

g=dt @dz® + dr’ @ dt

+ ¢ dz® @ dz” 4 Bu(dz® @ dz° + dz” @ dz®)

+ ab drz® @ d .1_‘b.




Basic Steps of the Proof (continued)

* 3) Use Hawking & Ellis Result Showing that the Volume Element of the
Transverse Discs Is Invariant Along the Generator Flow.




Basic Steps of the Proof (continued)

* 4) Use Einstein’s equations to Show that the Metric on the Transverse
Discs Is Invariant along the Generator Flow
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R33 = 0, Restricted to N
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Basic Steps of the Proof (continued)

* 5) Construction of Fiducial Riemannian Metric on the Space-Time

gY.Z)=g(Y.Z)+29(Y.V)g(Z,V)




Basic Steps of the Proof (continued)

* 6) Restrictions on the Geometry of the Transverse Discs following from
Poincaré Recurrence and Invariance of Geometry along the Flow

e Scalar curvature is constant on the horizon N.




Basic Steps of the Proof (continued)

* /) Closures of the Orbits of the Geodesics Form 2-Tori




Basic Steps of the Proof (continued)

* 8) Kolmogorov-Kontsevich Theorem Guarantees Existence of Foliations
of Geodesic 2-Tori by Transverse Circles




Basic Steps of the Proof (continued)

* 9) Define Privileged One-form w Based on Space-Time Connection

* Expressions for W and its Exterior Derivative can be Expressed in Terms
of the Metric Coefficients and their Derivatives:




Basic Steps of the Proof (continued)

* 10) Use Einstein’'s Equations to Simplify Formula for dw:

N dzx"




Basic Steps of the Proof (continued)

* | ) Construct Ribbon from Path on N Flowed along Geodesics through
the Ends of the Path




Basic Steps of the Proof (continued)

* [2) Use Stokes' Theorem to Show that the Integral over the Boundary of
the Ribbon of the One-form W vanishes.




Basic Steps of the Proof (continued)

* |3) Use Ribbon Argument to Correlate Integrals of w along Neighboring
Generators




Basic Steps of the Proof (continued)

* [4) Use Ribbon Argument to Show that all Generators are either
Complete or Incomplete:

* We restrict to the Case that the Generators are All Complete in One
Direction and Incomplete in the Other Direction

* We call this the Non-Degenerate Case




Basic Steps of the Proof (continued)

* |5) Candidate Vector Field Defined as Function U times Vector Field
Tangent to Generators

e The formula is given by
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Basic Steps of the Proof (continued)

* 16) A Cauchy Sequence for U:
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Basic Steps of the Proof (continued)

* | 7) Complexify the Space Using Grauert Tubes and Show that the
Cauchy Sequence Converges:

* The Limit is an Analytic Function U




Basic Steps of the Proof (continued)

* |8) Initial Data for Cauchy-Kowaleski on the Cauchy Horizon N for
Expansion into the Space-Time of the Killing Vector Field.
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Basic Steps of the Proof (continued)

* |9) Patch Together Space-Time Geometry with Killing Vector Field




Basic Steps of the Proof (continued)

» 20) Use Isenberg-Moncrief Results to Show that a Killing Field with Non-
Closed Orbits on a Compact Manifold Must Generate a Two-
Dimensional Isometry Group




Extensions of this work?

* What about Non-Analytic Space-Times?

* We don't know

* What about Degenerate Cauchy Horizons!

* We don't think Space-Times with Degenerate Cauchy Horizons Exist

* What about Cauchy Horizons with Ergodic Generators!

* We think that these are all Kasner Space-Times with Nonrational |dentifications




