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Abstract. We study the intersection lattice of a hyperplane arrangement
recently introduced by Hetyei who showed that the number of regions of
the arrangement is a median Genocchi number. Using a different method,
we refine Hetyei’s result by providing a combinatorial interpretation of the
coefficients of the characteristic polynomial of the intersection lattice of this
arrangement. We also show that the Möbius invariant of the intersection
lattice is a (nonmedian) Genocchi number. The Genocchi numbers count
a class of permutations known as Dumont permutations and the median
Genocchi numbers count the derangements in this class. We show that
the signless coefficients of the characteristic polynomial count Dumont-like
permutations with a given number of cycles. This enables us to derive
formulas for the generating function of the characteristic polynomial, which
reduce to known formulas for the generating functions of the Genocchi
numbers and the median Genocchi numbers. As a byproduct of our work,
we obtain new models for the Genocchi and median Genocchi numbers.
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1. Introduction

The braid arrangement (or type A Coxeter arrangement) is the hyperplane
arrangement in Rn, n ≥ 1, defined by

An−1 := {xi − xj = 0 : 1 ≤ i < j ≤ n}.
Note that the hyperplanes of An−1 divide Rn into open cones of the form

Rσ := {x ∈ Rn : xσ(1) < xσ(2) < · · · < xσ(n)},
where σ is a permutation in the symmetric group Sn. Hence the braid arrange-
ment An−1 has |Sn | = n! regions. The regions of the arrangement obtained
by intersecting A2 with the plane x+ y+ z = 0 are shown in the figure below.
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A classical formula of Zaslavsky [30] gives the number of regions of any real
hyperplane arrangement A in terms of the Möbius function of its intersection
(semi)lattice L(A). Indeed, given any finite, ranked poset P of length `, with
a minimum element 0̂, the characteristic polynomial of P is defined to be

(1.1) χP (t) :=
∑
x∈P

µP (0̂, x)t`−rk(x),

where µP is the Möbius function of P and rk(x) is the rank of x. Zaslavsky’s
formula for the number of regions r(A) of A is

(1.2) r(A) = (−1)`χL(A)(−1).

It is well known and easy to see that the lattice of intersections of the
braid arrangement An−1 is isomorphic to the lattice Πn of partitions of the set
[n] := {1, 2 . . . , n}. It is also well known that the characteristic polynomial of
Πn is given by

(1.3) χΠn(t) =
n∑
k=1

s(n, k)tk−1,

where s(n, k) is the Stirling number of the first kind, which is equal to (−1)n−k

times the number of permutations in Sn with exactly k cycles; see [26, Example
3.10.4]. Hence χΠn(−1) = (−1)n−1|Sn |. Therefore, from (1.2), we recover the
result observed above that the number of regions of An−1 is n!.
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Deformations of the braid arrangement are often studied in the literature,
and in many cases their number of regions is known. Among these defor-
mations are the Linial arrangement, Shi arrangement, Catalan arrangement,
semiorder arrangement, generic braid arrangement, and semigeneric braid ar-
rangement; see [25] for a discussion of these arrangements and for a general
introduction to the combinatorics of hyperplane arrangements. The Linial
arrangement is the hyperplane arrangement in Rn defined by,

{xi − xj = 1 : 1 ≤ i < j ≤ n}.
In [20] Postnikov and Stanley show that the number of regions of this arrange-
ment is the number of alternating trees on node set [n + 1], where a tree is
alternating if each node is either greater than all its neighbors or smaller than
all its neighbors.

Motivated by a problem on enumerating a certain class of tournaments,
Hetyei [14] introduced the homogenized Linial arrangement, which is the hy-
perplane arrangement in

{(x1, . . . , xn, y1, . . . , yn−1) : xi ∈ R ∀i ∈ [n], and yi ∈ R ∀i ∈ [n−1]} = R2n−1 .

given by1

H2n−3 := {xi − xj = yi | 1 ≤ i < j ≤ n}.
Note that by intersecting H2n−3 with the subspace y1 = y2 = · · · = yn−1 = 0,
one gets the braid arrangement An−1. Similarly by intersecting H2n−3 with
the subspace y1 = y2 = · · · = yn−1 = 1, one gets the Linial arrangement in Rn.

In [14], Hetyei proves that

(1.4) r(H2n−1) = hn,

where hn is a median Genocchi number,2 or equivalently by (1.2) that

(1.5) − χL(H2n−1)(−1) = hn.

There are numerous characterizations of the median Genocchi numbers in the
literature. One such characterization is given by the following formula for the
generating function, which was obtained by Barsky and Dumont [3],

(1.6)
∑
n≥1

hnx
n =

∑
n≥1

n!(n+ 1)!xn∏n
k=1(1 + k(k + 1)x)

.

A combinatorial characterization in terms of a class of permutations now called
Dumont derangements was also given by Barsky and Dumont in [3]. Another
was given by Randrianarivony in [21] in terms of a class of objects called
surjective staircases.

1Our indexing is justified by the fact that the length of the intersection lattice of the
arrangement is 2n− 3. This is an immediate consequence of Theorem 3.2.

2In the literature the median Genocchi number hn is usually denoted H2n+3 or |H2n+3|,
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Hetyei’s proof of (1.5) relies on the finite field method of Athanasiadis [2],
which is a method for computing the characteristic polynomial by counting
points in the complement of an associated arrangement over a finite field.
Hetyei obtains a recurrence for a refinement of the associated point count
polynomial and relates it to a recurrence of Andrews, Gawronsky, and Little-
john [1] for Legandre-Stirling numbers. This yields a formula for χL(H2n−1)(−1)
in terms of the Legandre-Stirling numbers, which is identical to a formula of
Claesson, Kitaev, Ragnarsson, and Tenner [7] for the median Genocchi num-
bers.

In this paper we further study the intersection lattice L(H2n−1) and its
characteristic polynomial χL(H2n−1)(t) using an approach quite different from
Hetyei’s. The first few characteristic polynomials and their values at t = 1
and t = 0 are given in the table below.

n χL(H2n−1)(t) t = −1 t = 0

1 t− 1 −2 −1
2 t3 − 3t2 + 3t− 1 −8 −1
3 t5 − 6t4 + 15t3 − 19t2 + 12t− 3 −56 −3
4 t7 − 10t6 + 45t5 − 115t4 + 177t3 − 162t2 + 81t− 17 −608 −17

We begin by showing that the intersection lattice L(H2n−1) is isomorphic to
the bond lattice of a certain bipartite graph, which belongs to the class of Ferrers
graphs introduced by Ehrenborg and van Willigenburg [12]. This enables us to
refine Hetyei’s result by deriving a combinatorial formula for the Möbius invariant
of the lower intervals of L(H2n−1) in terms of a class of permutations that we call
D-permutations, which are similar to the Dumont permutations. We obtain the
following analog of (1.3):

(1.7) χL(H2n−1)(t) =
2n∑
k=1

sD(2n, k)tk−1,

where (−1)ksD(2n, k) is equal to the number of D-permutations on [2n] with exactly
k cycles.

The D-permutations have a simple description. A permutation σ on [2n] is a
D-permutation if i ≤ σ(i) whenever i is odd, and i ≥ σ(i) whenever i is even. A
consequence of (1.7) and (1.5) is that the median Genocchi number hn is equal
to the number of D-permutations on [2n]. A particularly interesting feature of
this permutation model for the median Genocchi numbers is that the (nonmedian)
Genocchi number3 gn enumerates a subset of the set of D-permutations on [2n];
namely the set of D-cycles on [2n]. This follows from a simple bijection with a set
of permutations on [2n − 1] shown by Dumont in [8] to have cardinality equal to
gn. This feature is in contrast with the Dumont permutation model in which the

3In the literature the Genocchi number gn is usually denoted G2n or |G2n|.
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Genocchi numbers enumerate the full set of Dumont permutations on [2n] and the
median Genocchi numbers enumerate a subset of the these.

Our formula (1.7) therefore implies

(1.8) µL(H2n−1)(0̂, 1̂) = χL(H2n−1)(0) = −gn,

where and 0̂ and 1̂ are the minimum and maximum elements of L(H2n−1), respec-
tively. Hence the Genocchi numbers, as well as the median Genocchi numbers, play
a fundamental role in the study of the homogenized Linial arrangement.

We recover Hetyei’s result (1.5), by constructing a bijection from the full set of
D-permutations on [2n] to a set of surjective staircases shown by Randrianarivony
in [21] to have cardinality equal to the median Genocchi number hn. Moreover, this
bijection and the theory of surjective staircases enable us to prove two generating
function formulas for the characteristic polynomials. One such formula is

(1.9)
∑
n≥1

χL(H2n−1)(t)x
n =

∑
n≥1

(t− 1)n−1(t− 1)n x
n∏n

k=1(1− k(t− k)x)
,

where (a)n denotes the falling factorial a(a − 1) · · · (a − n + 1). Note that (1.9)
reduces to the Barsky-Dumont formula (1.6) for

∑
n≥1 hnx

n when t is set equal to

−1, and to a similar formula of Barsky and Dumont in [3] for
∑

n≥1 gnx
n when t is

set equal to 0.
In addition to the D-permutation model, our study of the characteristic poly-

nomial leads to other interesting combinatorial models for the median Genocchi
numbers and the Genocchi numbers. For instance, using our bond lattice result
and Hetyei’s formula (1.5), we show that a formula of Chung and Graham [6] for
chromatic polynomials of incomparability graphs yields another nice permutation
model for the median Genocchi numbers: hn is the number of permutations σ on
[2n] such that i > σ(i) only if i is even and σ(i) is odd. This leads to the conjectural
interpretation of −χL(H2n−1)(−t) as the enumerator of such permutations by their
number of cycles, which would imply that the Genocchi number gn is equal to the
number of such permutations that are cycles.

The paper is organized as follows. In Section 2 we review some basic material
on hyperplane arrangements, bond lattices, and Genocchi numbers. Our result that
the intersection lattice of the homogenized Linial arrangement is isomorphic to a
bond lattice is proved in Section 3. This bond lattice has a nice description as the
induced subposet of the partition lattice Π2n consisting of partitions all of whose
nonsingleton blocks have odd minimum and even maximum. Using Whitney’s NBC
theorem, we show that the signless Möbius invariant of each lower interval [0̂, π] of
the bond lattice enumerates a certain class of alternating forests on [2n].

In Section 4, we prove (1.7) and a more general formula for chromatic polynomials
of general Ferrers graphs by constructing a bijection between the alternating forests
of Section 3 and the D-permutations on [2n]. We also give some alternative formulas
for the characteristic polynomials in terms of D-permutations and we present some
of their consequences. We observe that the characteristic polynomial χL(H2n−1)(t)
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is divisible by (t − 1)3 and we give combinatorial and geometric interpretations of
the polynomial (t− 1)−3χL(H2n−1)(t).

Section 5 contains the bijection from the D-permutations on [2n] to the set of
surjective staircases whose cardinality is equal to hn. This bijection, the formulas of
Section 4 for the characteristic polynomial, and the theory of surjective staircases
are used to prove (1.9) and a similar generating function formula.

In Section 6, we present the permutation models for the Genocchi numbers and
median Genocchi numbers that arise from the Chung-Graham result on chromatic
polynomials. Further work on a type B analog and a Dowling arrangement gener-
alization, which will appear in a forthcoming paper, is discussed in Section 7.

Most of the results of this paper and of the forthcoming paper on the Dowling
generalization were announced in the extended abstract [19].

2. Preliminaries

2.1. Hyperplane Arrangements. Let k be a field (here k is R or C). A hyper-
plane arrangement A ⊆ kn is a finite collection of affine codimension-1 subspaces
of kn. The intersection poset of A is the poset L(A) of intersections of hyperplanes
in A (viewed as affine subspaces of kn), partially-ordered by reverse inclusion. If⋂
H∈AH 6= ∅ then the intersection poset is a geometric lattice, otherwise it’s a

geometric semilattice.
If A is a real hyperplane arrangement in Rn, then its complement Rn \A is dis-

connected. By the number of regions r(A) of A we mean the number of connected
components of Rn \A. This number can be detected solely from L(A) as Zaslavsky’s
formula (1.2) shows.

2.2. The Bond Lattice of a Graph. Let G = (V,E) be a graph. Given a subset
B of V , let G|B denote the induced subgraph of G with vertex set B. Let ΠV

denote the lattice of partitions of the set V ordered in the usual way by reverse
refinement. If V = [n] := {1, 2, . . . , n} we write Πn for ΠV . The bond lattice of G
is the induced subposet ΠG of ΠV consisting of partitions π = B1| · · · |Bk such that
G|Bi is connected for all i. It is well known that the chromatic polynomial chG(t)
of G satisfies

(2.1) chG(t) = tχΠG(t).

If V = [n], we can also associate to G the graphic hyperplane arrangement

AG = {xi − xj = 0 | {i, j} ∈ E(G)} ⊆ Rn .

It is well known and easy to see that

(2.2) ΠG
∼= L(AG).

Note that Πn is the bond lattice of the complete graph Kn and that the braid ar-
rangement An−1 is the graphical arrangement associated with Kn. Another example
is given below.



HOMOGENIZED LINIAL ARRANGEMENT 7

1|2|3|4

12|3|4 1|23|4 1|2|34

123|4 12|34 1|234

1234

1

2 3

4

G ΠG

Broken circuits provide a useful means of computing the Möbius function of the
bond lattice of a graph G = (V,E) (or more generally, of a geometric lattice). Fix a
total ordering of E and let S be a subset of E. Then S is called a broken circuit if it
is the edge set of a cycle of G with its smallest edge (with respect to this ordering)
removed. If S does not contain a broken circuit, we say that S is a non-broken
circuit set or NBC set. Clearly the edge set of a cycle always contains a broken
circuit. Hence if S is an NBC set, (V, S) is a forest. We call (V, S) for which S is
an NBC set an NBC forest of G.

Given any S ⊆ E, let πS be the partition of V whose blocks are the vertex sets
of the connected components of the graph (V, S). The following formula is due to
Whitney [29, Section 7]; a generalization for geometric lattices is due to Rota [23,
Pg. 359]. For π ∈ ΠG,

(2.3) (−1)rk(π)µ(0̂, π) = #{NBC forests (V, S) of G : πS = π}.
Given a tree T whose node set is a subset of Z>0, we say the tree is increasing if

when T is rooted at its smallest node, each nonroot vertex is larger than its parent.
A forest on a subset of Z>0 is said to be increasing if it consists of increasing trees.
Note that if G is Kn then by ordering the edges lexicographically with the smallest
element as the first component, the NBC forests of G are exactly the increasing
forests on [n]. It therefore follows from (2.3) and (1.2) that r(An−1) equals the
number of increasing forests on [n], which can easily be shown to be equal to n!.

For any tree T (rooted or unrooted), let |T | denote the number of nodes of T .
Recall that a plane tree is a rooted tree in which the children of each node are
linearly ordered. Let T be a plane tree on a subset of Z>0. When T is drawn in the
plane, the children of each vertex v are drawn from left to right according to their
linear order.

Now let T be a plane tree on a subset of Z>0. When drawn in the plane the
order is depicted from left to right. For each vertex v, the order of its children
determines a “left to right” order of the subtrees rooted at the children. If |T | > 1,
let T1, T2, . . . , Tk be the subtrees rooted at the children of the root r of T ordered
from “left to right”. The postorder word pw(T ) of T is defined recursively as the
concatenation

pw(T ) = pw(T1) · pw(T2) · · · · · pw(Tk) · r,
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if |T | > 1 and by pw(T ) = r if |T | = 1.
Every increasing tree T on node set V ⊂ Z>0 can be viewed as a plane tree on

V by rooting it at its smallest node and then ordering the children of each node in
increasing order. It is not difficult to prove that the map that sends an increasing
tree T on V to the permutation whose cycle form is (pw(T )), is a bijection from
the set of increasing trees to the set of cycles in SV . This bijection extends in
the obvious way to a bijection from the set of increasing forests on V to the set of
permutations in SV whose cycles correspond to the trees of the forest. Thus this
bijection and (2.3) yield another way of proving (1.3).

2.3. Genocchi and median Genocchi Numbers. The Genocchi numbers and
median Genocchi numbers are classical sequences of numbers, which have been de-
fined in many ways. Below we take a characterization of Dumont [8, Section 6]
as our definition of the Genocchi numbers and a characterization of Barsky and
Dumont [3] as our definition of the median Genocchi numbers.

A Dumont permutation is a permutation σ ∈ S2n such that 2i > σ(2i) and
2i − 1 ≤ σ(2i − 1) for all i = 1, . . . , n. A Dumont derangement is a Dumont
permutation without fixed points, i.e., 2i > σ(2i) and 2i − 1 < σ(2i − 1) for all
i = 1, . . . , n.

Example 2.1. When n = 2, the Dumont permutations on [4] (in cycle form) are

(1, 2)(3, 4) (1, 3, 4, 2) (1, 4, 2)(3).

When n = 3, the Dumont derangements on [6] are:

(1, 3, 5, 6, 4, 2) (1, 3, 4, 2)(5, 6) (1, 2)(3, 4)(5, 6) (1, 2)(3, 5, 6, 4)
(1, 4, 3, 5, 6, 2) (1, 5, 6, 3, 4, 2) (1, 5, 6, 2)(3, 4) (1, 4, 2)(3, 5, 6).

For n ≥ 1, the (signless) Genocchi number gn is defined to be the number of
Dumont permutations on [2n − 2], and for n ≥ 0, the (signless) median Genocchi
number hn is defined to be the number of Dumont derangements on [2n + 2]. We
list the Genocchi numbers and the median Genocchi numbers for small values of n
in the table below.

n 0 1 2 3 4 5 6

gn 1 1 3 17 155 2073
hn 1 2 8 56 608 9440 198272

Our notation is nonstandard in that gn is usually denoted G2n or |G2n|, while hn
is usually denoted H2n+3 or |H2n+3|. The Genocchi numbers and median Genocchi
numbers are also known as Genocchi numbers of the first and second kind, respec-
tively.

Another permutation characterization of the Genocchi numbers obtained by Du-
mont in [8, Section 6] is given by

(2.4) gn = |{σ ∈ S2n−1 : ∀ i ∈ [2n−2], σ(i) > σ(i+1) if and only if σ(i) is even}|.
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We also mention the following exponential generating function formula for the
Genocchi numbers (see [8, page 305])∑

n≥1

gn
x2n

(2n)!
= x tan

x

2
.

In [3], two formulas for the generating function of the Genocchi numbers and two
formulas for the generating function of the median Genocchi numbers are given. We
list these four generating function formulas here.

∑
n≥1

gnz
n =

∑
n≥1

(n− 1)!n! zn∏n
k=1(1 + k2z)

(2.5)

∑
n≥0

hnz
n =

∑
n≥0

n! (n+ 1)! zn∏n
k=1(1 + k(k + 1)z)

(2.6)

∑
n≥0

gn+1z
n =

∑
n≥0

(n!)2 zn∏n
k=1(1 + k2z)

(2.7)

∑
n≥1

hn−1z
n =

∑
n≥1

(n!)2zn∏n
k=1(1 + k(k + 1)z)

.(2.8)

Equation (2.7) is due to Carlitz [5] and to Riordan and Stein [22], and the rest are
due to Barsky and Dumont [3] .

3. The intersection lattice is a bond lattice

In this section we show that L(H2n−1) is isomorphic to the bond lattice of a
bipartite graph. This enables us to give a characterization of the intersection lattice
L(H2n−1) as an induced subposet of Π2n and to compute its Möbius function by
counting NBC sets.

Let Γ2n be the bipartite graph on {1, 3, 5, . . . , 2n − 1} t {2, 4, 6, . . . , 2n} with an
edge {2i− 1, 2j} whenever 1 ≤ i ≤ j ≤ n. The graph Γ6 is shown below.

1

3

5

2

4

6

More generally for any finite subset V of Z>0, let ΓV be the bipartite graph on
V with edge set

E = {{u, v} : u < v ∈ V, u is odd and v is even}.
Remark 3.1. The graphs ΓV are easily seen to belong to the class of Ferrers graphs,
which were introduced by Ehrenborg and van Willegenburg in [12]. In fact, it is not
much more difficult to show that all Ferrers graphs are of this form. Ferrers graphs
have been further studied in (among others) [7] and [24].
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Theorem 3.2. The poset isomorphism L(H2n−1) ∼= ΠΓ2n holds for all n ≥ 1.

Proof. Let (e1, e2, . . . , e2n+1) be the standard basis for R2n+1. For 1 ≤ i ≤ j ≤ n,
let

Hi,j = {v ∈ R2n+1 : (ei − en+1+i − ej+1) · v = 0}
and

Ki,j = {v ∈ R2n+1 : (e2i−1 − e2j) · v = 0}.
Clearly {Hi,j : 1 ≤ i ≤ j ≤ n} is precisely the arrangement H2n−1. Note that
K2n := {Ki,j : 1 ≤ i ≤ j ≤ n} is the graphical arrangement AG, where G is the
graph on [2n+ 1] whose edge set is equal to E(Γ2n). In other words, G is Γ2n with
an appended isolated node 2n+ 1. Since adding an isolated node to a graph yields
an isomorphic bond lattice, by (2.2) we have

L(K2n) ∼= ΠΓ2n .

We will prove the result by producing a vector space isomorphism ψ : R2n+1 →
R2n+1 that takes K2n to H2n−1. Indeed, such a map will induce an isomorphism
from L(K2n) to L(H2n−1).

First consider the linear operator φ : R2n+1 → R2n+1 defined on the standard
basis by letting φ(e2i−1) = ei − en+1+i and φ(e2i) = ei+1 for all i ∈ [n] and letting
φ(e2n+1) = e2n+1 . Let A be the matrix of φ with respect to the standard basis.
One can easily check that |detA| = 1. Now let ψ : R2n+1 → R2n+1 be the linear
operator whose matrix with respect to the standard basis is the transpose of A−1.
Clearly ψ is an isomorphism.

We claim that ψ takes the hyperplane Ki,j to the hyperplane Hi,j for all 1 ≤ i ≤
j ≤ n. To prove the claim, let v ∈ Ki,j , so (e2i−1 − e2j) · v = 0. We have

φ(e2i−1 − e2j) · ψ(v) = (ei − en+1+i − ej+1) · ψ(v).

We also have

φ(e2i−1 − e2j) · ψ(v) = (A(e2i−1 − e2j)) · ((A−1)T v)

= (A−1A(e2i−1 − e2j)) · v
= (e2i−1 − e2j) · v
= 0.

It follows that (ei − en+1+i − ej+1) · ψ(v) = 0. Hence ψ(v) is in Hi,j , which proves
the claim. It follows from the claim that ψ takes K2n to H2n−1 as desired. �

Hence, to study L(H2n−1), it suffices to study ΠΓ2n .

Proposition 3.3. For all finite subsets V of Z>0, the bond lattice ΠΓV is the induced
subposet of ΠV consisting of those partitions π for which each nonsingleton block of
π has an odd minimum and an even maximum.

Proof. Suppose that π ∈ ΠΓV . Let B be a nonsingleton block of π and let u = minB.
Since ΓV |B is connected, there must be an element v ∈ B such that {u, v} is an
edge of ΓV . By definition of ΓV , since u < v, the node u must be odd. A similar
argument tells us that maxB is even.
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Conversely, suppose that we have a partition π = B1| · · · |Bk ∈ ΠV such that each
nonsingleton Bi has an odd minimum and an even maximum. We wish to show that
ΓV |Bi is connected. Indeed, let Mi = maxBi and mi = minBi. By the definition
of ΓV , each odd vertex in Bi shares an edge with Mi and each even vertex of Bi
shares an edge with mi. Since, in particular, this means that mi and Mi share an
edge, ΓV |Bi is connected. Hence π ∈ ΠΓV . �

We will use the Rota-Whitney formula (2.3) to evaluate the Möbius funtion on
each lower interval [0̂, π] of ΠΓV . Let T be a tree whose nodes are in Z>0. We say
that T is increasing-decreasing (ID) if, when T is rooted at its largest node, each
internal node v satisfies

(1) if v is odd then v is less than all its descendants and all its children are even,
(2) if v is even then v is greater than all its descendants and all its children are

odd.

An an increasing-decreasing (or ID) forest is a forest, each of whose components
are increasing-decreasing trees. An example of an ID forest is given in the figure
below.

8

1 73

4 2

5

12 11 10

9

6

Proposition 3.4. Let T be a tree whose nodes are in Z>0. Then T is an ID tree if
and only if its internal nodes satisfy conditions (1) and (2) of the definition of ID
tree when T is rooted at its smallest node.

Proof. Assume |T | > 1. Let T be an ID tree with odd smallest node s and even
largest node t. Root T at t. Let T1, . . . , Tk be the subtrees rooted at the children
of t. Clearly, s must be the root of one of these subtrees say T1. Let S1, . . . , Sj be
the subtrees rooted at the children of s. Let T ′ be the tree obtained by removing
T1 from T . When we root T at s we get the rooted tree in which the subtrees
rooted at the children of s are S1, . . . , Sj , T

′. Since T is an ID tree, these subtrees
S1, . . . , Sj , T

′ must be ID trees rooted at their largest nodes, which are even. Hence
the internal nodes of T rooted at s satisfy (1) and (2) of the definition of ID tree.

The proof of the converse is analogous with the roles of even and odd exchanged,
and the roles of larger and smaller exchanged. �

The following result is implicit in the proof of Theorem 24 of [24]. We include a
proof for the sake of completeness.

Theorem 3.5. For all π ∈ ΠΓV , we have that (−1)|π|µ(0̂, π) equals the number of
ID forests on V whose trees have nodes sets equal to the blocks of π. Consequently,
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−µΠΓV
(0̂, 1̂) is equal to the number of ID trees on V and

χΠΓV
(t) =

2n∑
k=1

(−1)k|FV,k|tk−1,

where FV,k is the set of ID forests on V with exactly k trees.

Proof. We prove this result by showing that under an appropriate ordering of the
edges of ΓV , the NBC forests of ΓV are precisely the ID forests on V . The total order
on the edges of ΓV we use is as follows: First order the odd vertices in increasing
order and the even vertices in decreasing order, and then fix any linear extension ≺
of the product order of the two linear orders. By associating the edge {2i − 1, 2j}
with the ordered pair (2i − 1, 2j), we get a total order on the edges of ΓV . For
instance, we have {1, 8} ≺ {1, 6} ≺ {3, 2}.

Since adding an edge between two different components of a forest can never
complete a cycle, a forest is an NBC forest of ΓV if and only if its trees are NBCs
trees of the subgraph of ΓV induced by the node set of the tree. By definition, a
forest is an ID forest if and only if its trees are ID trees. Hence, it suffices to prove
that the NBC trees of ΓV are precisely the ID trees on V . We can assume |V | > 1,
minV is odd and maxV is even.

Let T be an ID tree on V . Suppose that e = {2i− 1, 2j} is an edge of ΓV that is
not in T . If we add e to T , we create a unique cycle ρ, which contains e. To show
that T is NBC, it suffices to find an edge of ρ that strictly precedes e in the order
≺. Root T at its largest node and let h be the youngest common ancestor of 2i− 1
and 2j (that is, the furthest from the root). Clearly h is a node of ρ.

Suppose h is odd. Then h ≤ 2i− 1 since T is an ID tree. If h is the parent of 2j
then h cannot be 2i− 1 since {2i− 1, 2j} is not an edge of T . Therefore h < 2i− 1,
which implies that {h, 2j} ≺ {2i − 1, 2j} = e. Thus {h, 2j} is the edge of ρ that
we seek. If h is not the parent of 2j then let 2k be the child of h that is a proper
ancestor of 2j. We thus have 2k > 2j, which implies {h, 2k} ≺ {2i − 1, 2j} = e.
Thus in this case, {h, 2k} is the edge of ρ that we seek.

The case that h is even is handled analogously with the role of even and odd
exchanged and the role of < and > exchanged. We can now conclude that T is an
NBC tree of ΓV .

Conversely, let T be an NBC tree of ΓV . Suppose that T is not an ID tree. Then
T rooted at its largest node has a node x with a grandchild y satisfying

x > y if x is odd and x < y if x is even.

Choose x so that its distance in T from the root is minimal. We claim that x cannot
be the root of T . Indeed, if x is even then it is not the largest node of T . Thus x is
not the root. If x is odd then it is not the root since the largest node of T must be
even. Let u be the parent of x and let v be the parent of y, which implies that x is
that parent of v. Thus, u, x, v, y forms a path in T .

We claim that {u, y} is an edge of ΓV . Indeed, if u is even then x is odd. We thus
have u > x > y. Also y is odd since it is a grandchild of x. It follows that {u, y} is
an edge of ΓV . The case when u is odd is handled analogously.
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Since {u, y} is an edge of ΓV we can use it to complete the cycle induced by the
node set {u, x, v, y}. Clearly {u, y} ≺ {u, x}. By the minimality of the choice of x,
since u is closer to the root than x is, we have u < v if u is odd and u > v if u
is even. Hence {u, y} ≺ {u, x}, {v, x}, {v, y}. This implies that the subgraph of T
induced by {u, x, v, y} is a broken circuit which contradicts the hypothesis that T
is an NBC tree. Therefore T is indeed an ID tree. �

By Theorem 3.2, we have the following consequence of Theorem 3.5.

Corollary 3.6. For all n ≥ 1,

χL(H2n−1)(t) =

2n∑
k=1

(−1)k|F2n,k|tk−1,

where F2n,k is the set of ID forests on [2n] with exactly k trees.

Using Hetyei’s formula (1.5) and Corollary 3.6, we obtain the following combi-
natorial interpretation of the median Genocchi numbers. In Section 5, we give an
alternative proof that does not rely on these results.

Corollary 3.7. For all n ≥ 1, the number of ID forests on [2n] is equal to hn.

In the next section we prove the following analogous result.

Theorem 3.8. For all n ≥ 1, the number of ID trees on [2n] is equal to gn.

From this we see that the nonmedian Genocchi numbers also play an important
role in the study of the intersection lattice of the homogenized Linial arrangement.

Corollary 3.9. For all n ≥ 1,

(3.1) µL(H2n−1)(0̂, 1̂) = −gn.

4. From ID forests to Dumont-like permutations

Our next step is to introduce a class of permutations similar to the Dumont
permutations discussed in Section 2.3 and then give a bijection between these per-
mutations and the ID forests. This will enable us to express the characteristic
polynomial in terms of D-permutations in several ways.

4.1. D-permutations. Let A be a finite subset of Z>0. We say σ ∈ SA is a D-
permutation on A if i ≤ σ(i) whenever i is odd and i ≥ σ(i) whenever i is even. We
denote by DA the set of D-permutations on A and by DCA the set of D-cycles on
A. If A = [n], we write Dn and DCn.

Example 4.1. The D-permutations on [4] (in cycle form) are

(1)(2)(3)(4) (1, 2)(3)(4) (1, 4)(2)(3) (3, 4)(1)(2)
(1, 4, 2)(3) (1, 3, 4)(2) (1, 2)(3, 4) (1, 3, 4, 2).

The D-cycles on [6] are:

(1, 3, 5, 6, 4, 2) (1, 4, 3, 5, 6, 2) (1, 5, 6, 3, 4, 2).
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Note that all Dumont permutations are D-permutations, but not conversely. In-
deed, a D-permutation can have both even and odd fixed points, while a Dumont
permutation can only have odd fixed points. It follows immediately from the defi-
nitions that

DC2n ⊆ {Dumont derange. in S2n} ⊆ {Dumont permut. in S2n} ⊆ D2n .

Recall that the two sets in the middle of this chain are enumerated by median
Genocchi number hn−1 and Genocchi number gn+1, respectively. It turns out that
the sets on the ends of the chain are also enumerated by Genocchi and median
Genocchi numbers, respectively. The count for DC2n is an easy consequence of
(2.4). We will see at the end of this section that the count for D2n can be proved
using Hetyei’s formula (1.5). In Section 5 we will prove it without relying on Heyei’s
result.

Theorem 4.2. For all n ≥ 1,

(1) |DC2n| = gn
(2) |D2n| = hn.

Proof of (1). There is an easy bijection between the set of D-cycles on [2n] and the
set S of permutations given in (2.4). Indeed, we send a D-cycle (a1, a2, . . . , a2n),
where a2n = 2n, to the permutation a1, a2, . . . , a2n−1 (in one line notation), which
is clearly in S. Hence the result follows from (2.4). �

4.2. The bijection. Let T be the set of ID trees. For T ∈ T , let T̂ be the plane
tree obtained by rooting T at its largest node (which is even when |T | > 1) and
fixing the following total ordering on the children of each node v of T :

• if v is even, place its children (all of which are odd) in increasing order from
left to right
• if v is odd, place its children (all of which are even) in decreasing order from

left to right.

Also let T̃ be the plane tree obtained by rooting T at its smallest node (which is
odd when |T | > 1) and fixing the above total ordering on the children of each node
v of T .

Recall from Section 2.2, that pw(T ) denotes the postorder word of a plane tree

T . For the ID tree T below, pw(T̂ ) = 42156378 and pw(T̃ ) = 56378421.

8

1 73

4 62

5

T =

Let W be the set of all words w1w2 . . . wm, where m ≥ 1, with distinct letters in
Z>0 that satisfy the following conditions:

(1) for all i ∈ [m− 1], if wi is odd then wi < wi+1
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(2) for all i ∈ [m− 1], if wi is even then wi > wi+1

(3) if wm is odd then it is the smallest letter of w
(4) if wm is even then it is the largest letter of w.

Lemma 4.3. Let T ∈ T . Then pw(T̂ ) ∈ W and pw(T̃ ) ∈ W.

Proof. Suppose T ∈ T . We prove the result for T̂ and T̃ simultaneously by induction
on |T |. The result is obviously true for |T | = 1, so assume |T | > 1. Let v1 < · · · < vk
be the children of the root r of T̂ . For each i, the subtree of T̂ rooted at vi is of the
form T̃i for some ID tree Ti by Proposition 3.4. We have

pw(T̂ ) = pw(T̃1) · · · · · pw(T̃k) · r,
where · denotes concatenation. Since the last letter of pw(T̂ ) is the root of T̂ , it is
even and is larger than all the other letters.

By induction on |T |, each pw(T̃i) is in W. We also know that the last letter of

pw(T̃i) is the root of T̃i, which is odd. Hence to prove that pw(T̂ ) ∈ W we need

only show that the last letter vi of pw(T̃i) is less than the first letter of pw(T̃i+1) for

all i ∈ [k − 1]. (Note that the last letter of pw(T̃k) is less than r). The first letter

of pw(T̃i+1) is greater than the root vi+1 of T̃i+1. Since vi < vi+1, we have that vi
is less than the first letter of pw(T̃i+1). Thus pw(T̂ ) ∈ W. An analogous argument

yields pw(T̃ ) ∈ W. �

Given a word w = w1w2 · · ·wm over alphabet Z>0, we say that wj is a right-to-left
minimum if wj < wi for all i > j. Similarly we say that wj is a right-to-left maximum
if wj > wi for all i > j. For example, the right-to-left minima of 2156437 are 1, 3, 7.
We also let w′ denote w with its last letter removed, that is w′ = w1 · · ·wm−1.

Lemma 4.4. Let T ∈ T . Then the children of the root of T̂ are exactly the right-to-
left minima of pw(T̂ )′, and the children of the root of T̃ are exactly the right-to-left

maxima of the word pw(T̃ )′.

Proof. Let v1 < · · · < vk be the children of the root r of T̂ . Each vj is less than all

its descendants in T̂ , so for all i < j, we have that vi is less than all descendents of
vj . Hence, vi, which is the last letter of the postorder word of the subtree rooted

at vi, is less than all subsequent letters of pw(T̂ )′. Conversely, if v is not a child
of r then it has an odd anscestor u, which must be less than v. Since u appears
after v in the postorder word, v is not a right-to-left minimum. The proof for T̃ is
completely analogous. �

Lemma 4.5. The map pw : {T̂ : T ∈ T } ∪ {T̃ : T ∈ T } → W is a bijection.

Proof. To show that the map is a bijection, we construct a map

γ :W → {T̂ : T ∈ T } ∪ {T̃ : T ∈ T }
and show that it is the inverse of w.

We define γ recursively. Let w = w1 · · ·wm ∈ W. If m = 1, let γ(w) be the tree
with the single node w1.
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Now suppose m > 1. To define γ, we need two cases:
Case 1: Assume wm is even. Then it is the largest letter of w. Let j1 <

· · · < jk be such that wj1 · · · , wjk are the right-to-left minima of the word w′ :=
w1w2 . . . wm−1. Note that jk = m− 1. For each i = 1, . . . , k, let αi(w) be the
segment wji−1+1wji−1+2 · · ·wji , where j0 = 0. Hence w′ is the concatenation of the
words α1(w), α2(w), . . . , αk(w).

For example, given the word w = 21564378 in W, we have, w′ = 2156437, and w′

breaks up into α1(w) = 21, α2(w) = 5643, and α3(w) = 7.
Since for all i, αi(w) is a segment of w ∈ W, it satisfies conditions (1) and (2)

of the definition of W. We claim that conditions (3) and (4) hold as well. Indeed,
the last letter wji of αi(w) is odd since it is a right-to-left minimum of w′ and is
therefore is followed by a larger letter in w. The last letter of αi(w) is smaller than
all the other letters of αi(w) since none of the other letters are right-to-left minima.
Hence (3) holds and (4) holds vacuously. Thus αi(w) ∈ W.

Now, for each i, we can recursively apply γ to αi(w) to obtain a plane tree

γ(αi(w)) in {T̃ : T ∈ T }. Let γ(w) be the plane tree constructed as follows:

(1) The root is wm, which is even and largest.
(2) The children of wm are the right-to-left minima wj1 < · · · < wjk , which are

odd.
(3) The subtree rooted at wji is γ(αi(w)) for each i.

Clearly γ(w) ∈ {T̂ : T ∈ T }.
Case 2: Assume wm is odd. An analogous argument allows us to decompose

w = w1 · · ·wm−1 ∈ W into segments αi(w) ∈ W, whose last letter is the ith right-
to-left maximum of w. We define γ(w) to be the plane tree constructed as follows:

(1) The root is wm, which is odd.
(2) The children of wm are the right-to-left maxima wj1 > · · · > wjk , which are

even
(3) The subtree rooted at wji is γ(αi(w)) for each i.

We have γ(w) ∈ {T̃ : T ∈ T }.
Now that we have shown that γ is well-defined, it remains to check that the maps

pw and γ are inverses of each other. We prove γ(pw(T̂ )) = T̂ and γ(pw(T̃ )) = T̃ ,
for all T ∈ T , by induction on |T |. If |T | = 1, this is clear, so suppose |T | > 1.

Case 1: T̂ . By Lemma 4.4, the children v1 < v2 < · · · < vk of the root r of T̂ are
exactly the right-to-left minima of the word pw(T̂ )′ = pw(T̃1) ·pw(T̃2) · · · · ·pw(T̃k),

where T̃i is the subtree of T̂ rooted at vi. Since vi is the last letter of pw(T̃i), we

have αi(pw(T̂ )) = pw(T̃i) for all i. By induction, γ(αi(pw(T̂ ))) = γ(pw(T̃i)) = T̃i.

Now we have that γ(pw(T̂ )) is the plane tree whose root is the last letter of

pw(T̂ ), which is r. The children of r are the right-to-left minima of pw(T̂ )′ which

are v1 < · · · < vk. The subtree rooted at vi is γ(αi(pw(T̂ ))) which is T̃i. Hence

γ(pw(T̂ )) = T̂ , as desired.

Case 2: T̃ . A completely analogous argument gives γ(pw(T̃ )) = T̃ .
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Hence γ ◦ pw is the identity map on {T̂ : T ∈ T } ∪ {T̃ : T ∈ T }. A similar
argument can be used to prove that the other composition pw ◦γ equals the identity
map on W. �

For any finite subset A of Z>0, let TA = {T ∈ T : the node set of T is A} and let
WA = {w ∈ W : the set of letters of w is A}. Recall that DCA is the set of D-cycles
on A.

Theorem 4.6. For any finite subset A of Z>0, let ψ : TA → DCA be the map defined
by letting ψ(T ) be the cycle (pw(T̂ )) in SA. Then ψ is a well defined bijection.
Consequently |TA| = |DCA|.
Proof. Consider the following maps:

(1) the map from TA to {T̂ : T ∈ TA} defined by T 7→ T̂

(2) the map from {T̂ : T ∈ TA} to {w ∈ WA : last letter of w is largest} defined

by T̂ 7→ pw(T̂ )
(3) the map from {w ∈ WA : last letter of w is largest} to DCA defined by

w 7→ (w).

It is clear that the first map is a bijection. It follows from Lemma 4.5 that the
second is also bijection. The third map is a well defined bijection since the last
letter of w must be even. Since ψ is the composition of three bijections, it is also a
bjection. �

An analogous argument can be used to show that the map TA → DCA that takes
T to the cycle (pw(T̃ )) is also a well defined bijection. The following result shows
that this map is, in fact, identical to ψ.

Proposition 4.7. For all T ∈ TA, the cycles (pw(T̂ )) and (pw(T̃ )) in SA are equal.

Proof. Let s be the smallest element of A and t the largest element. Then s is the
root of T̃ and t is its leftmost child. Let t1 < . . . , < tk be be the children of t in T̃
and let t > s1 > · · · > sj be the children of s. For each i ≥ 1, let Ti be the subtree

of T̃ rooted at ti and let Si be the subtree of T̃ rooted at si. Then pw(T̃ ) is the
concatenation

pw(T1) · · · pw(Tk) · t · pw(S1) · · · pw(Sj) · s.
Now let us look at pw(T̂ ). Clearly t is the root of T̂ and s is its leftmost child.

The children of t are s < t1 < · · · < tk. The children of s are s1 < · · · < sj . For

each i ≥ 1, the subtree of T̂ rooted si is Si and the subtree rooted at ti is Ti. Then
pw(T̂ ) is the concatenation

pw(S1) · · · pw(Sj) · s · pw(T1) · · · pw(Tk) · t.
From this we see that pw(T̃ ) and pw(T̂ ) are related by a cyclic shift. Hence the
cycles are the same. �

The cycle support of σ ∈ Sn is the partition cyc(σ) ∈ Πn whose blocks are
comprised of the elements of the cycles of σ. For example,

cyc((1, 7, 2, 4)(5)(6, 8, 9, 3)) = 1247|5|3689.
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The bijection in Theorem 4.6 extends to a bijection between ID forests and D-
permutations. Under this bijection, the blocks of the cycle support of the image
of an ID forest are the node sets of the trees of the ID forest. Hence we have the
following consequence of Theorem 4.6.

Corollary 4.8. Let π be a partition of a finite subset of Z>0. Then the ID forests
whose trees have node sets equal to the blocks of π are in bijection with the D-
permutations whose cycle support is π.

As a consequence of Theorem 3.5 and Corollary 4.8, we have the following result.

Theorem 4.9. Let A be a finite subset of Z>0. For all π ∈ ΠΓA,

(−1)|π|µΠΓA
(0̂, π) = |{σ ∈ DA | cyc(σ) = π}|.

Consequently,

(4.1) χL(ΠΓA
)(t) =

2n∑
k=1

sD(A, k)tk−1,

where (−1)ksD(A, k) is equal to the number of D-permutations on A with exactly k
cycles.

Equation (4.1) is equivalent to the following result on the chromatic polynomial
chG(t) of a general Ferrers graph G (see (2.1) and Remark 3.1).

Corollary 4.10. For all finite subsets A of Z>0,

chΓA(t) =
2n∑
k=1

sD(A, k)tk.

By Theorem 3.2, we have now proved (1.7), which is restated here.

Corollary 4.11. For all n ≥ 1,

χL(H2n−1) =

2n∑
k=1

sD(2n, k)tk−1,

where (−1)ksD(2n, k) is equal to the number of D-permutations on [2n] with exactly
k cycles.

Corollary 4.12. For all n ≥ 1,

χL(H2n−1)(−1) = −|D2n|
µL(H2n−1)(0̂, 1̂) = −|DC2n|.

Note that it follows from Corollary 4.12 that Part (2) of Theorem 4.2 is equivalent
to Hetyei’s formula (1.5). So Part (2) is now proved. In the next section we will
prove Part (2) without relying on (1.5), thereby recovering Hetyei’s result.

Note also that Theorem 3.8 is now proved since it follows immediately from
Theorems 4.2(1) and 4.6.
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4.3. Alternative formulas. We now give two alternative ways of expressing the
characteristic polynomial in terms of D-permutations (equivalently ID forests), which
will be used in Section 5.3. As a consequence of these formulas, we get a decom-
position of the Genocchi numbers and the median Genocchi numbers into a sum of
powers of 2.

Theorem 4.13. For all n ≥ 1,

(4.2) χΠΓ2n
(t) = (t− 1)

∑
σ∈D2n−2

(−t)#{even fixed points of σ}(1− t)#{other cycles of σ}.

Proof. Let FV be the set of ID forests on node set V . For V = [2n], Theorem 3.5
can be restated as

χΠΓ2n
(t) = −

∑
F∈F[2n]

(−t)m(F )−1,

where m(F ) denotes the number of trees of the forest F . For each F ∈ F[2n], let
F ′ be the forest obtained by removing node [2n] from F . Clearly F ′ ∈ F[2n−1]. We
thus have

χΠΓ2n
(t) = −

∑
G∈F[2n−1]

∑
F ∈ F[2n]

F ′ = G

(−t)m(F )−1.

Fix G ∈ F[2n−1] and let T be a tree of the forest G. For all F ∈ F[2n] for which
F ′ = G, the tree T is either a tree of the forest F or it is attached to 2n in F . Hence
to obtain a forest F ∈ F[2n] for which F ′ = G, we have the option of not attaching
T to 2n or attaching T at its smallest node, which can be done if and only if T is
not an even single node. Hence if T is not an even single node then it contributes a
factor of 1− t to the inner sum, and if T is an even single node then it contributes
a factor of −t to the inner sum. It follows that∑

F ∈ F[2n]

F ′ = G

(−t)m(F )−1 = (−t)#{even isolated nodes of G}(1− t)#{other trees of G}.

We now have

χΠΓ2n
(t) = −

∑
G∈F[2n−1]

(−t)#{even isolated nodes of G}(1− t)#{other trees of G}

= −(1− t)
∑

G∈F[2n−2]

(−t)#{even isolated nodes of G}(1− t)#{other trees of G},

with the second equality following from the fact that every G ∈ F[2n−1] consists of
the isolated node 2n− 1 and an ID forest on [2n− 2]. The result now follows from
Corollary 4.8. �
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Theorem 4.14. For all n ≥ 2,

(4.3) χΠΓ2n
(t) = (t− 1)3

∑
σ∈D2n−4

(1− t)#{fixed points of σ}(2− t)#{other cycles of σ}.

Proof. Each F ∈ F[2n] can be obtained from a forest in F[2n]\{2} either by adding
an isolated node 2 or by attaching the node 2 to 1. This implies that

(4.4) χΠΓ[2n]
= (1− t)χΠΓ[2n]\{2}

.

Similarly,

(4.5) χΠΓ[2n]\{2}
= (1− t)χΠΓ[2n]\{2,2n−1}

.

Now let F [2n]\{2,2n−1} be the subset of F[2n]\{2,2n−1} consisting of forests in which
the nodes 1 and 2n are in distinct trees. Since each forest in F[2n]\{2,2n−1} is either

a forest in F [2n]\{2,2n−1} or is obtained from one in F [2n]\{2,2n−1} by adding an edge
between the nodes 1 and 2n, we have by Theorem 3.5 that

(4.6) χΠΓ[2n]\{2,2n−2}
(t) = −(1− t)

∑
F∈F [2n]\{2,2n−2}

(−t)m(F )−1.

For each F ∈ F [2n]\{2,2n−1}, let F̂ be the forest obtained by removing the nodes 1

and 2n from F . Clearly F̂ ∈ F{3,...,2n−2}. It therefore follows from (4.4), (4.5), and
(4.6) that

χΠΓ[2n]
(t) = (t− 1)3

∑
F∈F [2n]\{2,2n−1}

(−t)m(F )−1(4.7)

= (t− 1)3
∑

G∈F{3,...,2n−2}

∑
F ∈ F [2n]\{2,2n−1}

F̂ = G

(−t)m(F )−1.

Fix G ∈ F{3,...,2n−2} and let T be a tree of the forest G. For all F ∈ F [2n]\{2,2n−1}
for which F̂ = G, the tree T is either a tree of the forest F or it is attached to either
1 or 2n in F . If T is a single node it can be attached to only one of the nodes in
{1, 2n} depending on its parity. Hence singleton trees of G contribute a factor of
1− t to the inner sum. If T has more than one node then there are exactly two ways
to attach it; with an edge between its largest node and 1, or with an edge between
its smallest node and 2n. Thus, nonsingleton trees of G contribute a factor 2− t to
the inner sum. It follows that∑

F ∈ F [2n]\{2,2n−1}

F̂ = G

(−t)m(F )−1 = (1− t)#{isolated nodes of G}(2− t)#{other trees of G}.
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We now have

χΠΓ2n
(t) = (t− 1)3

∑
G∈F{3,...,2n−2}

(1− t)#{isolated nodes of G}(2− t)#{other trees of G}

= (t− 1)3
∑

G∈F{1,...,2n−4}

(1− t)#{isolated nodes of G}(2− t)#{other trees of G}

= (t− 1)3
∑

σ∈D2n−4

(1− t)#{fixed points of σ}(2− t)#{other cycles of σ},

with the last equality following from (4.8). �

Note that when t is set equal to 0, equation (4.2) reduces to (3.1). Indeed, the
only terms to survive on right hand side of (4.2) are the ones corresponding to D-
permutations with no even fixed points. But these are the Dumont permutations,
which were used in Section 2.3 to define the Genocchi numbers.

In the following corollary, we obtain the decomposition of the median Genocchi
numbers by setting t = −1 in (4.2) and using (1.5). We obtain the decomposition
of the Genocchi numbers by setting t = 0 in (4.3) and using (3.1).

Corollary 4.15. For all n ≥ 2,

hn =
n−1∑
j=1

hn−1,j2
j+1

gn+1 =

n−1∑
j=0

gn−1,j2
j ,

where hn,j is the number of D-permutations on [2n] with exactly j cycles that are
not even fixed points and gn,j is the number of D-permutations on [2n] with exactly
j cycles that are not fixed points.

We expect that the coefficients gn−1,j are equal to the coefficients in Sundaram’s
decomposition [27, Proposition 3.5] of the Genocchi numbers into powers of 2.

4.4. Reducing the characteristic polynomial. From (4.3) we can see that χΠΓ2n
(t)

is divisible by (t − 1)3. In this subsection we give combinatorial and geometric in-
terpretations of the polynomial (t− 1)−3χΠΓ2n

(t).

Let L2n be the geometric semilattice (see [28]) obtained from ΠΓ[2n]\{2,2n−2} by
removing the order filter generated by the atom of ΠΓ[2n]\{2,2n−2} whose only nons-

ingleton block is {1, 2n}. That is,

L2n = {π ∈ ΠΓ[2n]\{2,2n−2} : 1 and 2n are in distinct blocks of π}.
Geometrically, L2n is the intersection semilattice of the affine hyperplane arrange-
ment obtained by deconing the graphic arrangement of Γ[2n]\{2,2n−2}. Indeed, let
P2n be the affine arrangement obtained by intersecting the graphical arrangement
of the graph Γ[2n]\{2,2n−1} with the affine hyperplane x1 = x2n + 1. It is easy to see
that the intersection semilattice L(P2n) of P2n is L2n.
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From (4.7), we can see that

(4.8) χL2n(t) = (t− 1)−3χΠΓ2n
(t).

By dividing both sides of (4.3) by (t − 1)3 and then setting t = 1, the median
Genocchi numbers appear again.

Corollary 4.16. For all n ≥ 3,

χL2n(0) = gn(4.9)

χL2n(1) = hn−3(4.10)

Consequently, the number of bounded regions of P2n is hn−3.

Proof. Equation (4.9) is an immediate consequence of (4.8) and Corollary 3.9.
It follows from Theorem 4.14 that χL2n(1) equals the number of D-permutations

on [2n−4] with no fixed points. But these are precisely the Dumont derangements on
[2n−4], which by the definition of the median Genocchi numbers given in Section 2.3,
is equal to hn−3. Hence (4.10) holds.

The consequence follows from another well known result of Zaslavsky [30], namely
that the number of bounded regions of any affine arrangementA is equal to |χL(A)(1)|.

�

5. From D-permutations to surjective staircases

In this section we prove (1.9) along with a similar formula for the generating
function of the characteristic polynomial of the homogenized Linial arrangement.
The proofs rely on the theory of surjective staircases introduced by Dumont [8].
We first construct a bijection from the D-permutations on [2n] to a certain class of
surjective staircases known to be enumerated by hn, thereby proving Theorem 4.2
(2) and completing our path to Hetyei’s formula (1.5).

5.1. Surjective staircases. An excedent function is a map f : [m] → [m] such
that for all i ∈ [m], f(i) ≥ i. It is convenient to visualize excedent functions by
associating them with fillings of the Ferrers diagram of shape (m,m− 1, . . . , 1). We
write the diagram in English notation with the row lengths decreasing from top to
bottom. The rows are labeled from top to bottom with the numbers m down to 1,
and the columns are labeled from left to right with the numbers 1 up to m. Let
Ci,j be the cell in the row labeled i and the column labeled j. The tableau T (f)
corresponding to excedent function f has an X in cell Ci,j whenever f(j) = i and
blanks in the other cells. For example, the tableau in the figure below represents the
excedent function f : [4]→ [4] with f(1) = 1, f(2) = 4, f(3) = 5, f(4) = 4, f(5) = 5.
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1 2 3 4 5

5 X X

4 X X

3

2

1 X

Clearly this correspondence is a bijection between the set Xm of excedent functions
f : [m] → [m] and the set of tableaux T of shape (m,m − 1, . . . , 1) filled with X’s
and blanks so that each column has exactly one X. The image of f corresponds to
the set of nonempty rows of T (f), that is the rows with an X. The fixed points of f
are the j ∈ [m] for which f(j) = j. Clearly the fixed points of f correspond to the
rows of T (f) that have an X in the rightmost cell of the row. An isolated fixed point
of f is a fixed point j of f such that f−1(j) = {j}. Clearly the isolated fixed points
correspond to the rows of T (f) that have only one X, which is in the rightmost cell
of the row.

It is not difficult to see that |Xm| = m!. For our purposes, we will need a bijection
from Sm to Xm constructed in [10].

Proposition 5.1 (Dumont and Randrianarivony [10, Proposition 1.3]). There exists
a bijection τ : Sm → Xm such that for all σ ∈ Sm and j ∈ [m], the following
properties hold:

(1) j is a cycle maximum of σ if and only if it is a fixed point of τ(σ),
(2) j is a fixed point of σ if and only if it is an isolated fixed point of τ(σ),
(3) σ(j) ≤ j if and only if j is in the image of τ(σ).

An excedent function f ∈ X2n is said to be a surjective staircase4 if its image is
{2, 4, . . . , 2n}. Since the odd labeled rows in the tableau T (f) corresponding to a
surjective staircase f are empty, we can delete these rows from the tableau. Let
T ′(f) denote the tableau obtained from T (f) by deleting the odd labeled rows. For
example, let f : [10]→ [10] be defined by

f(1) = 2, f(2) = 8, f(3) = 4, f(4) = 4, f(5) = 10,

f(6) = 6, f(7) = 10, f(8) = 8, f(9) = 10, f(10) = 10.

Then T ′(f) is the tableau given in the figure below.

4These are also known as surjective pistols in the literature.



24 LAZAR AND WACHS

1 2 3 4 5 6 7 8 9 10

10 X X X X

8 X X

6 X

4 X X

2 X

Let E2n be the set of surjective staircases on 2n. For f ∈ E2n, we say that j is
a maximum of f if j ∈ [2n − 2] and f(j) = 2n, that is, if f achieves its maximum
value at j and j 6= 2n−1, 2n. So j ∈ [2n−2] is a maximum of f if, in T ′(f), the top
row has an X in column j . For the surjective staircase shown in the figure above,
the maxima are {5, 7}.

5.2. The bijection. We use the Dumont-Randrianarivony bijection (Proposition 5.1)
to prove the following result.

Lemma 5.2. There is a bijection

φ : D2n → {f ∈ E2n+2 : f has no even maxima}
such that for all σ ∈ D2n and j ∈ [2n], the following properties hold:

(1) j is an even cycle maximum of σ if and only if it is a fixed point of φ(σ),
(2) j is an even fixed point of σ if and only if it is an isolated fixed point of

φ(σ),
(3) j is an odd fixed point of σ if and only if it is an odd maximum of φ(σ).

Proof. Let G2n be the set of all excedent functions g ∈ X2n that satisfy

• the image of g contains {2, 4, . . . , 2n}
• for all j ∈ [2n], g(j) is odd if and only if j is an odd isolated fixed point of
g.

Let τ be the bijection of Proposition 5.1. We claim that τ(D2n) = G2n. In-
deed, let σ ∈ D2n. The image of the excedent function τ(σ) is {2, 4, . . . , 2n} ∪
{odd fixed points of σ} by property (3) of Proposition 5.1, since σ is a D-permutation.
Hence τ(σ)(j) is odd if and only if it is a fixed point of σ. By property (2) of Propo-
sition 5.1, the odd fixed points of σ are the odd isolated fixed points of τ(σ).

To prove the result we construct a bijection

γ : G2n → {f ∈ E2n+2 : f has no even maxima}.
Then we show that the map γ ◦ τ restricted to D2n has the desired properties.

Let g ∈ G2n. We define an excedent function f : [2n+ 2]→ [2n+ 2] by

f(j) =


g(j), j ∈ [2n] and g(j) is even

2n+ 2, j ∈ [2n] and g(j) is odd

2n+ 2, j ∈ {2n+ 1, 2n+ 2}.
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It is clear that f ∈ E2n+2. We claim that f has no even maxima. Indeed, the
maxima of f are the j for which g(j) is odd. By the definition of G2n, such a j must
be a fixed point of g, so all the maxima of f are odd. We can now let

γ(g) = f.

It is helpful to visualize the map γ in terms of tableaux. First γ adds an empty
row labeled 2n+2 of length 2n+2 to the top of the tableau T (g), where g ∈ G2n. An
X is placed in both of its two rightmost cells. An X in an odd labeled row of T (g)
represents an isolated fixed point of g, so it is in the rightmost cell of its row. Next
γ slides each such X to the top of its column. At this point, the odd labeled rows
become empty. We remove these rows to get T ′(γ(g)). The figure below illustrates
the map γ.

1 2 3 4 5 6 7 8

8 X X

7 X

6 X

5 X

4 X X

3

2 X

1

γ−→

1 2 3 4 5 6 7 8 9 10

10 X X X X

8 X X

6 X

4 X X

2 X

We claim γ is bijective. Indeed, given a surjective staircase f ∈ E2n+2 with no
even maxima, we can obtain an excedent function g : [2n]→ [2n] by inserting empty
odd labeled rows between the even labeled rows in T ′(f) and then sliding the X’s
from the top row down to the bottom of their columns. After deleting the top row
we obtain T (g). Clearly g ∈ G2n. It is not difficult to see that the sliding down
process and sliding up process are inverses of each other.

The sliding process also makes it easy to see that for all g ∈ G2n and j ∈ [2n],

(A) j is an even fixed point of g if and only if j is a fixed point of γ(g),
(B) j is an even isolated fixed point of g if and only if j is an isolated fixed point

of γ(g),
(C) j is an odd isolated fixed point of g if and only if j is a maximum of γ(g).

Now let φ be the composition γ ◦τ |D2n . Clearly in combination with condition (1) of
Proposition 5.1, condition (A) implies condition (1) of the desired result. Similarly,
in combination with condition (2) of Proposition 5.1, conditions (B) and (C) imply
conditions (2) and (3), respectively, of the desired result. �

We are now ready to give a proof of Theorem 4.2 (2) that does not rely on Hetyei’s
formula (1.5). This proof completes our path to (1.5).
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Proof of Theorem 4.2, Part (2). By Lemma 5.2, we need only show that

(5.1) |{f ∈ E2n+2 : f has no even maxima}| = hn.

But this is implicit in the work of Dumont and Randrianarivony [11] and stated
explicitly in Corollary 10 (iii) of Randrianarivony [21]. �

5.3. The generating function formulas. In this subsection, we will use the bi-
jections of the previous sections to derive generating function formulas for the char-
acteristic polynomial of the homogenized Linial arrangement. To do so, we use a
formula (due independently to Randrianarivony [21] and Zeng [31]) for the gener-
ating function of a multivariate polynomial that enumerates surjective staircases
according to six statistics.

Let f ∈ E2n. Recall that a fixed point of f is a j ∈ [2n− 2] such that f(j) = j. A
surfixed point of f is a j ∈ [2n − 2] such that f(j) = j + 1. A maximum of f is a
j ∈ [2n− 2] such that f(j) = 2n. Consider the following six statistics on f :

• fd(f), the number of fixed points j of f such that f−1(j) \ {j} is nonempty
(doubled fixed point)
• fi(f), the number of fixed points j of f such that f−1(j) = {j} (isolated

fixed point)
• sd(f), the number of surfixed points j of f such that f−1(j + 1) \ {j} is

nonempty (doubled surfixed point)
• si(f), the number of surfixed points j of f such that f−1(j + 1) = {j}

(isolated surfixed point)
• mo(f), the number of maxima j of f that are odd (odd maximum)
• me(f), the number of maxima j of f that are even (even maximum).

The generalized Dumont-Foata polynomial Λ2n(x, y, z, x̄, ȳ, z̄) (introduced by Du-
mont in [9]) is defined by

Λ2n(x, y, z, x̄, ȳ, z̄) =
∑
f∈E2n

xmo(f)yfd(f)zsi(f)x̄me(f)ȳfi(f)z̄sd(f).

Theorem 5.3 (Randrianarivony [21, Theorem 4] and Zeng [31, Theorem 5]).

∑
n≥1

Λ2nu
n =

∑
n≥1

(x+ z̄)(n−1)(y + x̄)(n−1)un∏n−1
k=0(1− [(x+ k)(ȳ − y)− (x̄+ k)(z̄ − z)− (x+ k)(x̄+ k)]u

,

where a(n) = a(a+ 1) · · · (a+ n− 1).

Lemma 5.4. For all n ≥ 1,∑
σ∈D2n

tc(σ) = Λ2n+2(t, t, 1, 0, t, 1),

where c(σ) is the number of cycles of σ.
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Proof. Let φ be the bijection of Lemma 5.2. By Lemma 5.2,∑
σ∈D2n

tc(σ) =
∑
σ∈D2n

tfi(φ(σ))+fd(φ(σ))+mo(φ(σ))

=
∑

f ∈ E2n+2

me(f) = 0

tfi(f)+fd(f)+mo(f)

= Λ2n+2(t, t, 1, 0, t, 1).

�

We finally have the tools needed to prove (1.9), which is restated here.

Theorem 5.5. We have

(5.2)
∑
n≥1

χΠΓ2n
(t)un =

∑
n≥1

(t− 1)n(t− 1)n−1u
n∏n

k=1(1− k(t− k)u)
,

where (a)n = a(a− 1) · · · (a− (n− 1)).

Proof. By Lemma 5.4, we have that∑
n≥1

∑
σ∈D2n

tc(σ)un =
∑
n≥2

Λ2n(t, t, 1, 0, t, 1)un−1.

Since Λ2(t, t, 1, 0, t, 1) = 1, it therefore follows from Theorem 5.3 that∑
n≥1

∑
σ∈D2n

tc(σ)un = −1 +
∑
n≥1

(t+ 1)(n−1)t(n−1)un−1∏n−1
k=1(1 + (t+ k)ku)

=
∑
n≥2

(t+ 1)(n−1)t(n−1)un−1∏n−1
k=1(1 + (t+ k)ku)

=
∑
n≥1

(t+ 1)(n)t(n)un∏n
k=1(1 + (t+ k)ku)

.

Now by Theorem 4.9, we have∑
n≥1

χΠΓ2n
(t)un = −

∑
n≥1

∑
σ∈D2n

(−t)c(σ)−1un

= t−1
∑
n≥1

(−t+ 1)(n)(−t)(n)un∏n
k=1(1 + (−t+ k)ku)

=
∑
n≥1

(t− 1)n(t− 1)n−1u
n∏n

k=1(1− (t− k)ku)
.

�

Remark 5.6. Theorem 4.13 can also be used to prove Theorem 5.5. Indeed, by
Theorem 4.13 and Lemma 5.2,

χΠΓ2n
(t) = (t− 1)Λ2n(1− t, 1− t, 1, 0,−t, 1).



28 LAZAR AND WACHS

Equation (5.2) now follows from the Randrianarivony-Zeng formula given in Theo-
rem 5.3.

It follows from (3.1) and (1.5) that equation (5.2) can be viewed as a unifying
generalization of two of the four generating function formulas stated in Section 2.3.
Indeed, when t is set equal to 0, equation (5.2) reduces to the Barsky-Dumont for-
mula (2.5) for the Genocchi numbers. When t is set equal to 1, equation (5.2)
reduces to the first Barsky-Dumont formula (2.6) for the median Genocchi num-
bers. We will see that the next result is a unifying generalization of the other two
generating function formulas stated in Section 2.3.

Theorem 5.7. We have

(5.3)
∑
n≥1

χΠΓ2n+2
(t)un = (t− 1)

∑
n≥1

((t− 1)n)2 un∏n
k=1 (1− k(t− k)u)

.

Equivalently,

(5.4)
∑
n≥1

χL2n+2(t)u
n =

∑
n≥1

((t− 2)n−1)2 un∏n
k=1 (1− k(t− k)u)

,

where L2n is the geometric semilattice defined in Section 4.4.

Proof. By Theorem 4.14 and Lemma 5.2 we have that for all n ≥ 1,

χΠΓ2n+2
(t) = (t− 1)3Λ2n(1− t, 2− t, 1, 0, 1− t, 1).

The result now follows from the Randrianarivony-Zeng formula given in Theo-
rem 5.3.

The equivalency of (5.3) and (5.4) follows from (4.8). �

Equation (5.4) can also be viewed as a unifying generalization of two of the
generating function formulas given in Section 2.3. Indeed, by Corollary 4.16, when t
is set equal to 0, equation (5.4) reduces to the Carlitz-Riordan-Stein formula (2.7) for
the Genocchi numbers. When t is set equal to 1, equation (5.4) reduces to the second
Barsky-Dumont formula (2.8) for the the median Genocchi numbers. It is interesting
that the generating function formula (5.2) for the characteristic polynomial of ΠΓ2n

reduces to one set of generating function formulas given in Section 2.3, while the
generating function formula (5.4) for the characteristic polynomial of L2n reduces
to the other set.

When we set t = −1 in (5.3) we obtain a formula for the generating function of
the median Genocchi numbers that is not listed in Section 2.3, namely∑

n≥0

hnu
n = 1 + 2

∑
n≥1

(n!)2un∏n−1
k=1(1 + k(k + 1)u)

.

This formula might be known, but we have not seen it in the literature.

Remark 5.8. Many of the results in this section for V = [2n] are extended to
general Ferrers graphs ΓV in a forthcoming paper [17].
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6. Other permutation models

In this section, we show that a formula of Chung and Graham [6] for chromatic
polynomials of incomparablity graphs yields an interpretation of the median Genoc-
chi numbers in terms of yet another class of Dumont like permutations. This leads
us to conjecture an analogous interpretation of the Genocchi numbers.

A drop of a permutation σ on a finite set of positive integers is a pair (i, σ(i)) for
which i > σ(i). We say a drop (i, σ(i)) is an even-odd drop if i is even and σ(i) is
odd. Let d(n, k) be the number of permutations in Sn with exactly k drops that
are not even-odd. For example the cycle (1, 3, 2) ∈ S3 has two drops (2, 1) and
(3, 2); the first drop is even-odd and the second drop is not. Hence this cycle counts
towards d(3, 1). One can check that d(3, 0) = 2, d(3, 1) = 4, and d(3, 2) = 0.

Theorem 6.1. For all n ≥ 0,

(6.1) χL(H2n−1)(t) =
1

(2n)!

2n−1∑
k=0

d(2n, k)(t+ 1)(k)(t− 1)2n−1−k,

where x(m) = x(x+ 1) · · · (x+m− 1) and xm := x(x− 1) · · · (x−m+ 1).

Before proving this theorem we state a few consequences. By setting t = −1
in (6.1) and using Hetyei’s result (1.5), we obtain yet another combinatorial inter-
pretation of the median Genocchi numbers.

Corollary 6.2. For all n ≥ 1,

hn = |{σ ∈ S2n : σ has only even-odd drops}|.
By setting t = 0 in (6.1) and applying (3.1) we obtain yet another formula for

the Genocchi numbers.

Corollary 6.3. For all n ≥ 1,

gn =
1

(2n)!

2n−1∑
k=0

(−1)kd(2n, k)k!(2n− 1− k)!.

A much nicer combinatorial formula for the Genocchi numbers analogous to that
of Corollary 6.2 is given in the following conjecture.

Conjecture 6.4. For all n ≥ 1, gn is equal to the number of cycles on [2n] with
only even-odd drops.

We have verified this conjecture by computer for n ≤ 6. The following conjecture
along with Theorem 4.2 implies both Corollary 6.2 and Conjecture 6.4. The first
consequence follows by Theorem 4.9.

Conjecture 6.5. Let A be a finite subset of Z>0. Then the number of cycles on
A with only even-odd drops is equal to the number of D-cycles on A. Consequently,
for all n ≥ 1,

(1) if π ∈ ΠΓ2n then |µΠΓ2n
(0̂, x)| is equal to the number of permutations on [2n]

with only even-odd drops and cycle support π.
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(2) for all j, the number of permutations on [2n] with j cycles and with only
even-odd drops is equal to the number of D-permutations with j cycles.

We have verified (2) by computer for n ≤ 6.

Proof of Theorem 6.1. The incomparability graph inc(P ) of a finite poset P is the
graph with vertex set P and edge set

E = {{x, y} : x and y are incomparable in P}.
Given a poset P , we say that a permutation σ of the vertices of P has a P -drop
(x, σ(x)) if x >P σ(x), and write d(P, k) for the number of permutations of P with
exactly k P -drops.

Next we observe that Γ2n is the incomparability graph of a poset. Indeed, Γ2n

is the incomparability graph of the poset P2n on [2n] with order relation given by
x ≤P2n y if:

• x ≤ y and x and y have the same parity
• x < y, x is even and y is odd.

The Hasse diagram of P6 and its incomparability graph Γ6 are given below.

1

3

5

2

4

6

P6

1

3

5

2

4

6

inc(P6)

Recall from Theorem 3.2 and Section 2.2 that

χL(H2n−1)(t) = χΠΓ2n
(t) = t−1chΓ2n(t),

where chG(t) denotes the chromatic polynomial of a graph G. Chung and Graham
[6, Corollary 7] prove that for any finite poset P , the chromatic polynomial chinc(P )

has the following expansion:

(6.2) chinc(P )(t) =

|P |−1∑
k=0

d(P, k)

(
t+ k

|P |

)
.

Hence since Γ2n = inc(Pn),

χL(H2n−1)(t) =
1

(2n)!

2n−1∑
k=0

d(P2n, k)(t+ 1)(k)(t− 1)n−1−k.

Now note that (i, σ(i)) is a P2n-drop of σ ∈ S2n if and only if it is a drop of σ that
is not even-odd. Hence d(P2n, k) = d(2n, k) and the result holds. �

We define an even-odd descent of a permutation σ to be a descent σ(i) > σ(i +
1) such that σ(i) is even and σ(i + 1) is odd. Since Foata’s first fundamental
transformation takes drops to descents, the word “drop” can be replaced by the word
“descent” in the definition of d(2n, k) without changing the validity of Theorem 6.1
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and Corollary 6.3. Similarly, Corollary 6.2 remains true if we replace the word
“drop” with “descent”.

There is a known permutation model for the Genocchi numbers that resembles the
one we have been discussing. Kitaev and Remmel [16, 15] conjectured and Burstein,
Josuat-Vergès, and Stromquist [4] proved that the set of permutations in S2n with
only even-even descents has cardinality equal to g2n−2, where an even-even descent
is defined in the obvious way.

7. Further results: Type B and Dowling arrangements

In a forthcoming paper [18], we will present a type B analog of our results and a
Dowling arrangement generalization that unifies our results in types A and B. We
define the type B homogenized Linial arrangement to be the hyperplane arrangement
in R2n,

HB2n−1 = {xi ± xj = yi : 1 ≤ i < j ≤ n} ∪ {xi = yi : i = 1 . . . , n}.

Our type B analog of (1.9) yields the following generating function formula for the
number of regions r(HB2n−1) of HB2n−1:

(7.1)
∑
n≥1

r(HB2n−1)xn =
∑
n≥1

(2n)!xn∏n
k=1(1 + 2k(2k + 1)x)

.

For m ≥ 1, let ωm be the primitive mth root of unity e
2πi
m . For m,n ≥ 1, we define

the homogenized Linial-Dowling arrangement to be the hyperplane arrangement in
C2n given by

Hm2n−1 := {xi − ωlmxj = yi : 1 ≤ i < j ≤ n, 0 ≤ l < m} ∪ {xi = yi : 1 ≤ i ≤ n}.

By intersecting Hm2n−1 with the subspace y1 = y2 = · · · = yn = 0, one gets the
Dowling arrangement Amn in Cn. The intersection lattice of Amn is isomorphic to
Πn+1 when m = 1 and to the type B partition lattice ΠB

n when m = 2. By
introducing this Dowling analog of the homogenized Linial arrangement, we obtain
unifying generalizations of the types A and B results. For instance, we obtain the
m-analog of (1.9),∑

n≥1

χL(Hm2n−1)(t)x
n =

∑
n≥1

(t− 1)n,m(t−m)n−1,m x
n∏n

k=1(1−mk(t−mk)x)
,

where (a)n,m = a(a−m)(a− 2m) · · · (a− (n− 1)m). Note that this reduces to (7.1)
when we set m = 2 and t = −1.

We also obtain an m-analog of the formula gn = |µL(H2n−1)(0̂, 1̂)| involving a well
studied polynomial analog of the Genocchi numbers known as the Gandhi polyno-
mials [13, 11].

For a synopsis of some of our results on the homogenized Linial-Dowling arrange-
ment, see the extended abstract [19, Section 4].
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