МТН 309

Additional Problems for Section 4.4

1. For each of the following, determine whether a has a multiplicative inverse $\bmod m$. If so, find the multiplicative inverse of a in \mathbb{Z}_{m}. Do this by using the Euclidian algorithm to obtain gcd's and Bézout coefficients.
(a) $a=2, m=17$
(b) $a=34, m=89$
(c) $a=200, m=1001$
2. Encrypt the message ATTACK using the RSA system with public key $(n, e)=$ (2537, 13), translating each letter into integers and grouping together pairs of integers. To compute the modular exponential $\left[a^{e}\right]_{n}$ you can type $(a) \wedge e \bmod n$ into google.
3. Consider the RSA system with public key (n, e). Find the decryption exponent d for
(a) $(n, e)=(77,17)$
(b) $(n, e)=(43 \cdot 59,13)$.
