Supplemental Problems: Difference Quotients, Secants, and Tangents

1. For each function below, find the difference quotient, $\frac{f(x+h) - f(x)}{h}$.

- a) f(x) = 3
- b) f(x) = 3x
- c) f(x) = 3 x
- d) $f(x) = x^2 + 1$
- e) $f(x) = 2x x^2$
- f) $f(x) = x^2 3x + 2$
- 2. For each function in problem 1), find the slope of the secant line through:
 - i) x = 1 and x = 2
 ii) x = 1 and x = 1.5
 iii) x = 1 and x = 1.1

Hint: Recall that the secant line to f through x = a and x = b is the line through the points (a, f(a)) and (b, f(b)). Hence, we have:

slope of secant
$$x = a$$
 and $x = b = \frac{f(b) - f(a)}{b - a}$

3. For each function in problem 1), find the slope of the tangent line at x = 1. Hint: Recall that the slope of the tangent line to f at x = a is:

slope of tangent at
$$x = a = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

4. Find the slope of the tangent line to the given function at the point indicated:

a)
$$f(x) = 2x - 5$$
 at $x = 1$
b) $f(x) = 2x - 5$ at $x = 2$
c) $f(x) = x^2 - 2x$ at $x = 0$
d) $f(x) = x^2 - 2x$ at $x = 1$
e) $f(x) = x^2 - 2x$ at $x = 3$
f) $f(x) = x^2 + 7x - 1$ at $x = -2$
g) $f(x) = x^2 - 3x + 4$ at $x = 5$
h) $f(x) = 9 - x^2$ at $x = -1$
i) $f(x) = x - x^2$ at $x = -3$

Some Answers:

a) 0 b) 3 c) -1 d) 2x + h e) 2 - 2x - h f) 2x + h - 3
 a) 0, 0, 0 b) 3, 3, 3 d) 3, 2.5, 2.1 (slopes should 'approach' those in problem 3)
 a) 0 b) 3 c) -1 d) 2 e) 0 f) -1
 a) 2 b) 2 c) -2 d) 0 e) 4 f) 3 g) 7 h) 2 i) 7