Supplemental Problems:

Difference Quotients, Secants, and Tangents

1. For each function below, find the difference quotient, $\frac{f(x+h)-f(x)}{h}$.
a) $f(x)=3$
b) $f(x)=3 x$
c) $f(x)=3-x$
d) $f(x)=x^{2}+1$
e) $f(x)=2 x-x^{2}$
f) $f(x)=x^{2}-3 x+2$
2. For each function in problem 1), find the slope of the secant line through:
i) $x=1$ and $x=2$
ii) $x=1$ and $x=1.5$
iii) $x=1$ and $x=1.1$

Hint: Recall that the secant line to f through $x=a$ and $x=b$ is the line through the points $(a, f(a))$ and $(b, f(b))$. Hence, we have:

$$
\text { slope of secant } x=a \text { and } x=b=\frac{f(b)-f(a)}{b-a}
$$

3. For each function in problem 1), find the slope of the tangent line at $x=1$.

Hint: Recall that the slope of the tangent line to f at $x=a$ is:

$$
\text { slope of tangent at } x=a=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

4. Find the slope of the tangent line to the given function at the point indicated:
a) $f(x)=2 x-5$ at $x=1$
b) $f(x)=2 x-5$ at $x=2$
c) $f(x)=x^{2}-2 x$ at $x=0$
d) $f(x)=x^{2}-2 x \quad$ at $\quad x=1$
e) $f(x)=x^{2}-2 x$ at $x=3$
f) $f(x)=x^{2}+7 x-1 \quad$ at $\quad x=-2$
g) $f(x)=x^{2}-3 x+4 \quad$ at $\quad x=5$
h) $f(x)=9-x^{2} \quad$ at $\quad x=-1$
i) $f(x)=x-x^{2} \quad$ at $\quad x=-3$

Some Answers:

1. a) 0 b) 3
c) -1
d) $2 x+h$
e) $2-2 x-h$
f) $2 x+h-3$
2. a) $0,0,0 \quad$ b) $3,3,3 \quad$ d) $3,2.5,2.1 \quad$ (slopes should 'approach' those in problem 3)
3. a) 0
b) 3
c) -1
d) 2
e) $0 \quad \mathrm{f})-1$
4. a) 2
b) 2
c) -2
d) 0
e) 4 f) 3
g) 7
h) $2 \quad$ i) 7
