$$
\begin{gathered}
\text { Supplemental Example: } \\
\text { Increasing/Decreasing, Concavity, etc. }
\end{gathered}
$$

Example: Consider the function

$$
f(x)=4-\frac{2}{x}+\frac{3}{x^{2}}
$$

a) Determine the intervals on which f is increasing, decreasing, and give the coordinates of any and all relative max and mins.
b) Determine the intervals on which f is concave up, down, and give the coordinates of any and all inflection points.

Solution: a) Make a sign chart for f^{\prime}.

$$
\begin{aligned}
f & =4-\frac{2}{x}+\frac{3}{x^{2}} \\
& =4-2 x^{-1}+3 x^{-2} \\
\Longrightarrow f^{\prime} & =0-2(-1) x^{-2}+3(-2) x^{-3} \\
& =2 x^{-2}-6 x^{-3} \\
& =\frac{2}{x^{2}}-\frac{6}{x^{3}} \\
& =\frac{2 x}{x^{3}}-\frac{6}{x^{3}} \\
& =\frac{2 x-6}{x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}=0 & \Longleftrightarrow \frac{2 x-6}{x^{3}}=0 \\
& \Longleftrightarrow 2 x-6=0 \\
& \Longleftrightarrow \quad 2 x=6 \\
& \Longleftrightarrow \quad x=3 \\
& \Longleftrightarrow \quad \frac{2 x-6}{x^{3}} \text { undefined } \\
f^{\prime} \text { undefined } & \Longleftrightarrow x^{3}=0 \\
& \Longleftrightarrow x=0
\end{aligned}
$$

Hence, there are two critical points, and testing for the sign of f^{\prime} on the resulting pieces, gives:

Hence, f is increasing on $(-\infty, 0)$ and $(3, \infty)$ and decreasing on $(0,3)$.
0 'looks like' a relative max, and 3 'looks like' a min ...
... however, if we try plugging in $x=0$,

$$
f(0)=4-\frac{2}{(0)}+\frac{3}{(0)^{2}}
$$

\ldots there's a problem. f is not defined at $x=0$. Consequently, the critical point $x=0$ does not correspond to a point on the graph, and hence there is no 'max' at $x=0$.

On the other hand, plugging in $x=3$, we get:

$$
f(3)=4-\frac{2}{(3)}+\frac{3}{(3)^{2}}=4-\frac{2}{3}+\frac{3}{9}=\frac{36}{9}-\frac{6}{9}+\frac{3}{9}=\frac{33}{9} \approx 3.67
$$

Hence, f has no relative maxima and one relative minimum at $(3,33 / 9) \approx(3,3.67)$.
b) Make a sign chart for $f^{\prime \prime}$.

$$
\begin{aligned}
f^{\prime} & =2 x^{-2}-6 x^{-3} \\
\Longrightarrow f^{\prime \prime} & =2(-2) x^{-3}-6(-3) x^{-4} \\
& =-4 x^{-3}+18 x^{-4} \\
& =-\frac{4}{x^{3}}+\frac{18}{x^{4}} \\
& =-\frac{4 x}{x^{4}}+\frac{18}{x^{4}} \\
& =\frac{-4 x+18}{x^{4}}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime \prime}=0 & \Longleftrightarrow \frac{-4 x+18}{x^{4}}=0 \\
& \Longleftrightarrow \quad-4 x+18=0 \\
& \Longleftrightarrow \quad 4 x=18 \\
& \Longleftrightarrow \quad x=\frac{18}{4}=\frac{9}{2}=4.5 \\
f^{\prime \prime} \text { undefined } & \Longleftrightarrow \quad \frac{-4 x+18}{x^{4}} \text { undefined } \\
& \Longleftrightarrow x^{4}=0 \\
& \Longleftrightarrow x=0
\end{aligned}
$$

Hence, there are two 'critical points', and testing for the sign of f ' on the resulting pieces, gives:

Hence, f is concave up on $(-\infty, 0)$ and $(0,4.5)$, and concave down on $(4.5, \infty)$.
Since f changes concavity at 4.5 , plugging in we see that f has one inflection point, at $(4.5, f(4.5)) \approx(4.5,3.7)$.

