Supplemental Example:

Increasing/Decreasing, Concavity, etc.

Example: Consider the function
=4 - 2 4 =
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a) Determine the intervals on which f is increasing, decreasing, and give the coordi-
nates of any and all relative max and mins.

b) Determine the intervals on which f is concave up, down, and give the coordinates
of any and all inflection points.

Solution: a) Make a sign chart for f’.
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Hence, there are two critical points, and testing for the sign of f’ on the resulting

pieces, gives:
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Hence, f is increasing on (—o0,0) and (3, 00) and decreasing on (0, 3).

0 ‘looks like” a relative max, and 3 ‘looks like” a min ...



... however, if we try plugging in x = 0,
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... there’s a problem. f is not defined at x = 0. Consequently, the critical point z = 0
does not correspond to a point on the graph, and hence there is no ‘max’ at x = 0.

On the other hand, plugging in z = 3, we get:

Hence, f has no relative maxima and one relative minimum at (3,33/9) ~ (3, 3.67).

b) Make a sign chart for f”.
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Hence, there are two ‘critical points’, and testing for the sign of f” on the resulting
pieces, gives:
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Hence, f is concave up on (—o00,0) and (0,4.5), and concave down on (4.5, 00).

Since f changes concavity at 4.5, plugging in we see that f has one inflection point,

at (4.5, f(4.5)) ~ (4.5,3.7).



