Supplemental Examples and Excercises: Left and Right Hand Sums

Example: Find the left and right hand sums for $f(x) = x^2 + 1$ over the interval $1 \le x \le 5$ using n = 4 first, then using n = 8. Include sketches each time.

Solution: We will first find LHS and RHS using n = 4.

Hence, we take our interval:

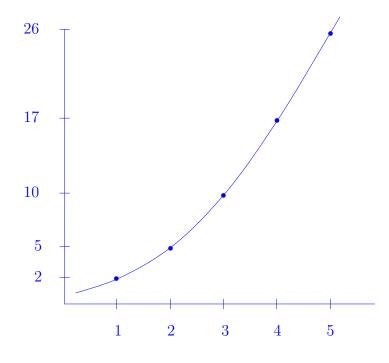
and chop it into n = 4 equal pieces:

1				
1	1 2	2 :	3 4	4 5

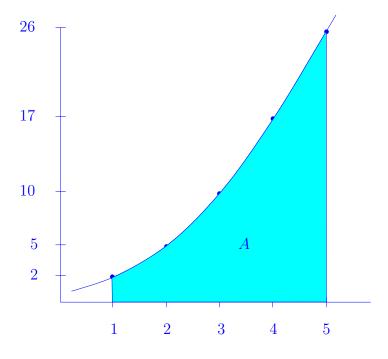
We plot these points in a table:

x	1	2	3	4	5
$f(x) = x^2 + 1$	2	5	10	17	26

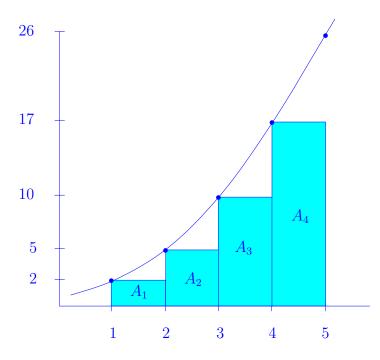
... and on an x-y plane, sketching the graph of $f(x) = x^2 + 1$:



Note that the area we will approximate with the LHS and RHS is:



To form the left hand sum (LHS), we draw a rectangle over each piece, with the upper *left* corners touching the graph:

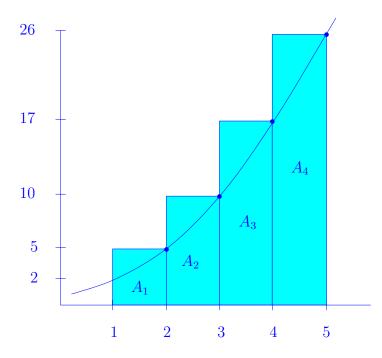


Hence, we have:

LHS =
$$A_1 + A_2 + A_3 + A_4$$

= $(2 \cdot 1) + (5 \cdot 1) + (10 \cdot 1) + (17 \cdot 1)$
= $2 + 5 + 10 + 17$
= 34

To form the right hand sum (RHS), we draw a rectangle over each piece, with the upper right corners touching the graph:



Hence, we have:

RHS =
$$A_1 + A_2 + A_3 + A_4$$

= $(5 \cdot 1) + (10 \cdot 1) + (17 \cdot 1) + (26 \cdot 1)$
= $5 + 10 + 17 + 26$
= 58

So, using n = 4, we get LHS = 34 and RHS = 58.

Now we find LHS and RHS using n = 8.

Hence, we take our interval:

and chop it into n = 8 equal pieces:



Note that the width of the pieces is now 0.5.

We plot these points in a table:

	x	1	1.5	2	2.5	3	3.5	4	4.5	5
x	$^{2} + 1$	2	3.25	5	7.25	10	13.25	17	21.25	26

As before, plot these points, and **redraw** LHS and RHS, now using 8 rectangles of width 0.5. You should get LHS = 39.5 and RHS = 51.5.

.....

... Of course, by now we now how to find the area A exactly using the Fundamental Theorem of Calculus. What is it? (Hint: Remember, the first step is to find an antiderivative of $f(x) = x^2 + 1$.)