Supplemental Examples and Excercises: Left and Right Hand Sums

Example: Find the left and right hand sums for $f(x)=x^{2}+1$ over the interval $1 \leq x \leq 5$ using $n=4$ first, then using $n=8$. Include sketches each time.

Solution: We will first find LHS and RHS using $n=4$.

Hence, we take our interval:

and chop it into $n=4$ equal pieces:

We plot these points in a table:

x	1	2	3	4	5
$f(x)=x^{2}+1$	2	5	10	17	26

\ldots and on an $x-y$ plane, sketching the graph of $f(x)=x^{2}+1$:

Note that the area we will approximate with the LHS and RHS is:

To form the left hand sum (LHS), we draw a rectangle over each piece, with the upper left corners touching the graph:

Hence, we have:

$$
\begin{aligned}
\mathrm{LHS} & =A_{1}+A_{2}+A_{3}+A_{4} \\
& =(2 \cdot 1)+(5 \cdot 1)+(10 \cdot 1)+(17 \cdot 1) \\
& =2+5+10+17 \\
& =34
\end{aligned}
$$

To form the right hand sum (RHS), we draw a rectangle over each piece, with the upper right corners touching the graph:

Hence, we have:

$$
\begin{aligned}
\text { RHS } & =A_{1}+A_{2}+A_{3}+A_{4} \\
& =(5 \cdot 1)+(10 \cdot 1)+(17 \cdot 1)+(26 \cdot 1) \\
& =5+10+17+26 \\
& =58
\end{aligned}
$$

So, using $n=4$, we get LHS $=34$ and RHS $=58$.

Now we find LHS and RHS using $n=8$.

Hence, we take our interval:

and chop it into $n=8$ equal pieces:

Note that the width of the pieces is now 0.5 .

We plot these points in a table:

x	1	1.5	2	2.5	3	3.5	4	4.5	5
$x^{2}+1$	2	3.25	5	7.25	10	13.25	17	21.25	26

As before, plot these points, and redraw LHS and RHS, now using 8 rectangles of width 0.5 . You should get $\mathrm{LHS}=39.5$ and $\mathrm{RHS}=51.5$.
... Of course, by now we now how to find the area A exactly using the Fundamental Theorem of Calculus. What is it? (Hint: Remember, the first step is to find an antiderivative of $f(x)=x^{2}+1$.)

