Derivative Rules and Tangent Lines

Recall that the the derivative of a function f is defined by:

$$
f^{\prime}(x)=\text { the slope of } f \text { at } x=\text { the slope of the tangent line at } x
$$

We have the following rules for derivatives. Let b, c, m, and n be constants. Let f and g be functions.

Derivative of a Linear Function: $\quad(m x+b)^{\prime}=m$

Derivative of a Constant:
$(c)^{\prime}=0$

Derivative of x :
$(x)^{\prime}=1$

Power Rule:

$$
\left(x^{n}\right)^{\prime}=n \cdot x^{n-1}
$$

Sum/Difference:

$$
(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}
$$

Constant Multiple:

$$
(c \cdot f)^{\prime}=c \cdot\left(f^{\prime}\right)
$$

Product Rule:

$$
(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Quotient Rule:

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}
$$

Given a function $f(x)$, the tangent line at $x=a$:
i) goes through the point $(a, f(a))$
ii) has slope $m=f^{\prime}(a)$

To find the equation of such a tangent line, we may use the two facts above, along with either point-slope or slope-intercept form.

