Derivative Rules and Tangent Lines

Recall that the the *derivative* of a function f is defined by:

f'(x) = the slope of f at x = the slope of the tangent line at x

We have the following rules for derivatives. Let b, c, m, and n be constants. Let f and g be functions.

Derivative of a Linear Function:	(mx+b)'=m
Derivative of a Constant:	(c)' = 0
Derivative of x :	(x)' = 1
Power Rule:	$(x^n)' = n \cdot x^{n-1}$
Sum/Difference:	$(f\pm g)'=f'\pm g'$
Constant Multiple:	$(c \cdot f)' = c \cdot (f')$
Product Rule:	$(f \cdot g)' = f' \cdot g + f \cdot g'$
Quotient Rule:	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$

Given a function f(x), the tangent line at x = a:

- i) goes through the point (a, f(a))
- ii) has slope m = f'(a)

To find the equation of such a tangent line, we may use the two facts above, along with either point-slope or slope-intercept form.