Supplemental Examples and Excercises: Antiderivatives and Definite Integrals

Example: Use the shortcut rules to find each antiderivative.

a) $\int 4 dx$

Solution: When finding the antiderivative of 4, the question is:

4 is the derivative of *what function*?

$$\int 4 = 4x + C$$

b) $\int (x+3) \, dx$

Solution: Here the question is:

x + 3 is the derivative of what function?

Using the shortcut rules, we have:

$$\int (x+3) = \int x + \int 3 = \frac{x^2}{2} + 3x + C$$

c) $\int (x^2 + 5x + 7) dx$

Solution:

$$\int (x^2 + 5x + 7) = \int x^2 + 5 \int x + \int 7 = \frac{x^3}{3} + 5 \cdot \frac{x^2}{2} + 7x + C$$

Example: Use the Fundamental Theorem of Calculus to find each definite integral.

a) $\int_{2}^{7} 4 \, dx$

Solution: Recall that, for positive functions, the definite integral $\int_a^b f(x) dx$ is the area under f(x), between x = a and x = b. The Fundamental Theorem of Calculus (FTC) says:

$$\int_{a}^{b} f(x) = F(x) \Big|_{a}^{b} = F(b) - F(a),$$

where F(x) is any antiderivative of f(x). (Hence, we can always take 'C = 0'.)

Thus, in this case, FTC says:

$$\int_{2}^{7} 4 = \left(4x \Big|_{2}^{7} = 4(7) - 4(2) = 28 - 8 = 20\right)$$

b) $\int_{1}^{2} (x+3) dx$

Solution: In this case, FTC says:

$$\int_{1}^{2} (x+3) = \left(\frac{x^2}{2} + 3x\right)\Big|_{1}^{2} = \left(\frac{(2)^2}{2} + 3(2)\right) - \left(\frac{(1)^2}{2} + 3(1)\right) = 8 - 3.5 = 4.5$$

c) $\int_0^1 (x^2 + 5x + 7) dx$

Solution: By plugging in the endpoints and subtracting as above, you may check the final answer below:

$$\int_0^1 (x^2 + 5x + 7) = \left(\frac{x^3}{3} + 5 \cdot \frac{x^2}{2} + 7x\right|_0^1 \approx 9.83$$

Exercise 1: Find each antiderivative.

a) $\int 7 dx$ b) $\int (7x - x^2) dx$ c) $\int (6x^2 - 4x + 8) dx$ d) $\int \frac{2}{\sqrt{x}} dx$

Exercise 2: Find each definite integral.

a) $\int_{0}^{4} 7 dx$ b) $\int_{1}^{3} (7x - x^{2}) dx$ c) $\int_{0}^{1} (6x^{2} - 4x + 8) dx$ d) $\int_{1}^{4} \frac{2}{\sqrt{x}} dx$ e) $\int_{2}^{4} (9 + x) dx$ f) $\int_{0}^{1} (1 - x^{6}) dx$

Answers: (Try before looking!)

1: a)
$$7x + C$$
 b) $7 \cdot \frac{x^2}{2} - \frac{x^3}{3} + C$ c) $2x^3 - 2x^2 + 8x + C$ d) $4\sqrt{x} + C$
2: a) 28 b) 16.5 c) 8 d) 4 e) 24 f) $\frac{6}{7}$