ADDITIONAL PROBLEMS FOR MTH 532

Problem A1. Let $GL(n, \mathbb{C})$ consist of complex $n \times n$ matrices A such that det $A \neq 0$. Show that $GL(n, \mathbb{C})$ is a Lie group of dimension $2n^2$. It is called the (complex) general linear group.

Problem A2. Let $SL(n, \mathbb{C})$ consist of complex $n \times n$ matrices A such that det A = 1. Show that $SL(n, \mathbb{C})$ is a Lie group of dimension $2n^2 - 2$. It is called the (complex) special linear group.

Problem A3. Let U(n) consist of complex $n \times n$ matrices A such that $A\bar{A}^t = E$. Here, \bar{A} is obtained from A by replacing each entry of A with its complex conjugate. Show that U(n) is a Lie group of dimension n^2 . It is called the unitary group. [Hint: observe that $C = A\bar{A}^t$ is a Hermitian matrix, meaning that $\bar{C} = C^t$, and that all Hermitian matrices form a vector space of real dimension n^2].

Problem A4. Show that U(1) is diffeomorphic, as a manifold, to the circle. Let SU(2) be the subgroup of U(2) consisting of matrices with determinant 1. Show that SU(2) is diffeomorphic, as a manifold, to the 3-sphere.